跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:饒拉
研究生(外文):LaRao
論文名稱:氯對團聚微囊藻細胞破壞及其代謝物釋出及降解之研究
論文名稱(外文):Effect of Chlorination on the Cell Integrity and Metabolites Release and Degradation for Colonial Microcystis
指導教授:林財富林財富引用關係
指導教授(外文):Tsair-Fuh Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:118
中文關鍵詞:團聚微囊藻微囊藻毒β-cyclocitral細胞完整性加氯氧化
外文關鍵詞:Colonial Microcystismicrocystin226-trimethyl-1-cyclohexene-1-carboxaldehyde (β-cyclocitral)cell integritychlorination
相關次數:
  • 被引用被引用:1
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討團聚微囊藻細胞受到氯氧化後,細胞破損的程度與其胞內代謝物釋出之相關性,以及胞外代謝物的降解規律。實驗以次氯酸鈉作為氧化劑,並以自然水體中分離培養的三種不同粒徑之團聚微囊藻作為研究對象,分別研究了在ASM培養基及經0.2 μm過濾之成功湖水為背景條件下,藻細胞的破壞動力以及代謝物釋放與降解的動力。其中微囊藻細胞被氯所破壞的程度,以細胞完整性來表示,主要通過螢光染色(染色劑,SYTOX Green nucleic acid stain, SYTOX)搭配流式細胞儀(flow cytometer, FCM)進行分析,並以螢光顯微鏡(epifluorescence microscope, EFM)輔助判定;代謝物選取兩種該實驗藻種的典型代謝產物β-cyclocitral和微囊藻毒素(microcystin)為代表,前者應用頂空固相微萃取法(head-space solid phase micro-extraction, SPME) 搭配氣相層析質譜儀(gas chromatograph/mass spectrometry detector, GC/MSD)進行分析,後者應用酵素連結免疫吸附法 (Enzyme-Linked ImmunoSorbent Assay, ELISA)進行分析。研究對象經實驗定性證實具有產高濃度β-cyclocitral 及產生毒素microcystin的能力。
研究結果發現微囊藻對於氯的抗氧化力與細胞團聚粒徑的大小有關,細胞破裂可以以Delayed Chick Watson Model模擬,越大粒徑的團聚微囊藻其抗氧化能力越強,細胞破壞遲滯時間(tlag)越長、破裂動力常數(k)亦越小;推測與團聚黏質對氯之競爭及氯擴進入團聚內細胞之影響有關。藻細胞於成功湖水實驗組中,其k值亦小於ASM培養基的對應劑量組別,推測可能機制為水中天然有機物質(Nature Organic Matter, NOM)與藻體競爭而消耗了氯的劑量,降低了氯與藻細胞作用之效力,但兩種背景液在tlag長短方面沒有表現出明顯的差異。
在臭味代謝物方面,當微囊藻受到一定的破壞時,氯便可進入細胞與胞內破壞β-carotene加氧酶,使得總β-cyclocitral的濃度下降;但在餘氯濃度足夠的情況下,持續的氯接觸也會使氯作用於β-carotene,從而斷鍵形成β-cyclocitral,使得總β-cyclocitral的濃度上升;研究中使用的氯劑量亦證實對β-cyclocitral無氧化的效果。另外實驗中也觀察到短時間的低氯劑量的曝露會對微囊藻產生刺激,進而產生大量的β-cyclocitral。
在毒素代謝物方面,氧化造成的細胞破壞會導致胞內毒素的釋出,但氯對微囊藻毒素具有較強的氧化性,因此只有在低氯劑量組能夠觀察到胞外毒素的上升,然而於高氯劑量組方面,毒素的降解速率大於釋出速率,因此可觀察到總毒素快速下降且在胞外沒有毒素的累積。本研究毒素降解可以二階反應模擬,其數值介於269~483 M-1s-1,相比文獻值較大,即在本研究的系統中毒素降解速率較快。
本研究表明微囊藻的形態會影響氧化過程對其細胞的破壞、胞內代謝物的釋放和降解過程,粒徑越大影響越為顯著,氧化效力越弱。在實際原水處理過程中,加氯量不僅應該考慮pH值、天然有機物(NOM)濃度等方面的影響,還應該考慮到藻的團聚程度影響,而這恰好是前人研究中所忽略的問題,也是我們今後研究中需要注意和探討的方面。

The proliferation of cyanobacteria in drinking water sources is problematic for water authorities as they can interfere with water treatment processes. Chlorination as a commonly used oxidation process in water treatment has shown the potential to lyse cyanobacterial cells, resulting in release of toxic metabolites and odorants. Unfortunately, the netabolites are sometimes difficult to be removed in conventional water treatment processes.
Microcystis, a toxic genus of cyanobacteria often present in colonial forms under natural conditions is studied for the effect of chlorination on the cell integrity and metabolites release and degradation. In the oxidation experiments, the colonial Microcystis were sieved into three size groups and were oxidized in algae growth medium (ASM) and in the filtrated water from Cheng Kung Lake, NCKU.
A fluorescence technique, combining SYTOX Green nucleic acid stain with flow cytometer, was successfully developed for the determination of cell integrity for colonial Microcystis. A solid-phade microextraction (SPME) concentration followed by a gas chromatograph (GC) and mass spectrometric detector (MSD) was employed to measure an odorous metabolite, β-cyclocitral, while an enzyme-linked immunosorbent assay (ELISA) was used to detect a toxic metabolite, microcystins. A series of chlorination of Microcystis-laden water was conducted at different chlorine dosages for different colony sizes. During the experiments, residual chlorine concentration, cell integrity, and metabolites concentration were monitored at different time.
The results show that the bigger the colony is the slower the cell rupture kinetics was observed, meaning that the colonial Microcystis was more resistant to chlorine than single cells. A Delayed Chick Watson Model describe the experimental data very well for the kinetic of cell rupture. The lag time and rate constant of cell rupture increased and decreased with increasing colony size, respectively. It suggests that diffusion of chlorine into the intra-colonial cells and interaction between chlorine and extracellular polymeric substances (mucilage) may be the reason to retard the reaction. In the addition, experimental results obtained for those conducted in the two waters also confirmed that lag times and rate constants were also influenced by water matrix. For the toxic metabolite, chlorination may rupture the cells and cause the release of microcystins. The degradation of microcystins only ocuured when enough chlorine was dosed. The rate may be described by a second-order model, with a rate constant of 269-483 M-1s-1. For odorant, chlorine may inactivate β-carotene oxygenase and inhibit the production of β-cyclocitral. At short reaction time, low CT value of chlorine may stimulate the prodcution of β-cyclocitral by the cells. In addition, chlorine may also react with β-carotene directly to form β-cyclocitral, causing an increase of β-cyclocitral concentration later in the experimental time.

摘要 I
Abstract III
致謝 V
第一章 緒論 1
1-1 研究源起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 微囊藻的特性 4
2-1-1 單顆粒微囊藻與團聚微囊藻之比較 4
2-1-2 團聚形成之影響因素 6
2-1-3 團聚藻氧化研究之侷限 8
2-2 微囊藻有害代謝物 9
2-2-1 微囊藻臭味代謝物 9
2-2-2 微囊藻毒素 14
2-3 加氯氧化對於藍綠細菌代謝物釋出之影響 20
2-3-1 次氯酸鈉氧化機制 20
2-3-2 影響氯氧化因子 20
2-3-3 氯氧化作用對於藍綠菌體的破壞 21
2-4 螢光染色應用於藻體觀測 23
2-4-1 螢光染劑 24
2-4-2 螢光顯微鏡(Epifluorescence Microscope,EFM) 27
2-4-3 流式細胞儀(Flow Cytometer,FCM) 29
第三章 實驗設備與方法 31
3-1 研究架構 31
3-2 團聚微囊藻之準備 33
3-2-1 團聚微囊藻之來源與分離純化方法 33
3-2-2 團聚微囊藻之培養方法 34
3-2-3 團聚微囊藻計數方法 36
3-2-4 團聚微囊藻篩分方法 39
3-3 氧化實驗 40
3-3-1 氧化實驗所需的準備 40
3-3-2 加氯氧化實驗 40
3-4 藍綠菌細胞完整性觀察 42
3-4-1 螢光顯微鏡(Epifluorescence Microscope,EFM) 42
3-4-2 流式細胞儀 (Flow Cytometer, FCM) 43
3-5 自由餘氯分析 45
3-6 臭味物質分析 46
3-7 藻類毒素分析 49
第四章 結果與討論 51
4-1 細胞完整性檢測方法之可行性測試 51
4-1-1 螢光顯微鏡可行性之測試 51
4-1-2 流式細胞儀可行性之測試 54
4-1-3 團聚微囊藻分散方法對細胞完整性的影響測試 58
4-2 氯對團聚微囊藻之氧化結果 60
4-2-1 粒徑小於37 µm之團聚微囊藻 61
4-2-2 粒徑介於37 µm~270 µm之團聚微囊藻 73
4-2-3 粒徑大於270 µm之團聚微囊藻 81
4-2-4 不同背景液結果之比較 89
4-2-5 不同團聚粒徑結果之比較 91
4-3 氯氧化團聚微囊藻動力模式之探討 94
4-3-1 細胞完整性之動力學模擬 94
4-3-2 微囊藻毒素釋出及降解之動力學分析 104
第五章 結論與建議 110
5-1 結論 110
5-2 建議 112
參考文獻 113


Acero, J.L., Rodriguez, E. and Meriluoto, J. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research 39(8). 1628-1638. (2005)
Adam, G. and Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry 33(7–8). 943-951. (2001)
Andersen, R.A. Algal culturing techniques. Academic Press. (2005)
Binet, M.T. and Stauber, J.L. Rapid flow cytometric method for the assessment of toxic dinoflagellate cyst viability. Marine Environmental Research 62(4). 247-260. (2006)
Boulos, L., Prevost, M., Barbeau, B., Coallier, J. and Desjardins, R. LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods 37(1). 77-86. (1999)
Breeuwer, P., Drocourt, J.-L., Bunschoten, N., Zwietering, M.H., Rombouts, F.M. and Abee, T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in saccharomyces cerevisiae, which result in accumulation of fluorescent product. Applied and Environmental Microbiology 61(4). 1614-1619. (1995)
Burkert, U., Hyenstrand, P., Drakare, S. and Blomqvist, P. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology 35(1). 11-17. (2001)
Chang, D.W., Hsieh, M.L., Chen, Y.M., Lin, T.F. and Chang, J.S. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to beta-cyclocitral. Journal of Hazardous materials 185(2-3). 1214-1220. (2011)
Cho, M., Chung, H. and Yoon, J. Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Applied and Environmental Microbiology 69(4). 2284-2291. (2003)
Chow, C.W.K., Drikas, M., House, J., Burch, M.D. and Velzeboer, R.M.A. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research 33(15). 3253-3262. (1999)
Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G. and Welch, R.P. Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microbial Ecology 10(2). 179-185. (1984)
Coleman, A.W. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnology and Oceanography 25(5). (1980)
Daley, R.J. and Hobbie, J.E. Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnology and Oceanography. 875-882. (1975)
Daly, R.I., Ho, L. and Brookes, J.D. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environmental Science & Technology 41(12). 4447-4453. (2007)
Dawson, R.M. The toxicology of microcystins. Toxicon 36(7). 953-962. (1998)
Del Giorgio, P., Prairie, Y. and Bird, D. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microbial Ecology 34(2). 144-154. (1997)
Diaper, J., Tither, K. and Edwards, C. Rapid assessment of bacterial viability by flow cytometry. Applied Microbiology and Biotechnology 38(2). 268-272. (1992)
Dietrich, A.M., Hoehn, R.C., Dufresne, L.C., Buffin, L.W., Rashash, D.M.C. and Parker, B.C. Oxidation of odorous and nonodorous algal metabolites by permanganate, chlorine, and chlorine dioxide. Water Science and Technology 31(11). 223-228. (1995)
Ding, J., Shi, H., Timmons, T. and Adams, C. Release and removal of microcystins from Microcystis during oxidative-, physical-, and UV-based disinfection. Journal of Environmental Engineering 136(1). 2-11. (2010)
Dorsey, J., Yentsch, C.M., Mayo, S. and McKenna, C. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry 10(5). 622-628. (1989)
Duhamel, S. and Jacquet, S. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. Journal of Microbiological Methods 64(3). 316-332. (2006)
Falconer, I. and Humpage, A. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. International Journal of Environmental Research and Public Health 2(1). 43-50. (2005)
Funari, E. and Testai, E. Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology 38(2). 97-125. (2008)
Gan, N., Xiao, Y., Zhu, L., Wu, Z., Liu, J., Hu, C. and Song, L. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environmental Microbiology 14(3). 730-742. (2012)
Harada, K.-I., Ozaki, K., Tsuzuki, S., Kato, H., Hasegawa, M., Kuroda, E., Arii, S. and Tsuji, K. Blue color formation of cyanobacteria with β-cyclocitral. Journal of Chemical Ecology 35(11). 1295-1301. (2009)
Haugland, R.P., Spence, M.T. and Johnson, I.D. Handbook of fluorescent probes and research chemicals. Molecular Probes Eugene, OR. (1996)
Hayes, K.P. and Burch, M.D. Odorous compounds associated with algal blooms in south Australian waters. Water Research 23(1). 115-121. (1989)
Hernández, M., Macia, M., Padilla, C. and Del Campo, F.F. Modulation of human polymorphonuclear leukocyte adherence by cyanopeptide toxins. Environmental Research 84(1). 64-68. (2000)
Hitzfeld, B.C., Hoger, S.J. and Dietrich, D.R. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives 108. 113-122. (2000)
Ho, L., Onstad, G., von Gunten, U., Rinck-Pfeiffer, S., Craig, K. and Newcombe, G. Differences in the chlorine reactivity of four microcystin analogues. Water Research 40(6). 1200-1209. (2006)
Hoadley, A. and Gould, J. Disinfection. Journal (Water Pollution Control Federation) 49(6). 1067-1074. (1977)
Hobbie, J.E., Daley, R.J. and Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33(5). 1225-1228. (1977)
Ikawa, M., Sasner, J. and Haney, J. Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia 443(1-3). 19-22. (2001)
Jüttner, F. Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Applied and Environmental Microbiology 47(4). 814-820. (1984)
Jüttner, F. and Höflacher, B. Evidence of β-carotene 7,8(7′,8′) oxygenase (β-cyclocitral, crocetindial generating) in Microcystis. Archives of Microbiology 141(4). 337-343. (1985)
Jüttner, F., Höflacher, B. and Wurster, K. Seasonal analysis of volatile organic substances (VOBs) in fresh water phytoplankton populations dominated by Dinobryon, Microcystis, and Aphanizonmenon. Journal of Phycology 22(2). 169-175. (1986)
Jüttner, F., Watson, S., Elert, E. and Köster, O. β-cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis. Journal of Chemical Ecology 36(12). 1387-1397. (2010)
Jones, G.J. and Korth, W. In situ production of volatile odour compounds by river and reservoir phytoplankton populations in Australia. Water Science and Technology 31(11). 145-151. (1995)
Jones, K.H. and Senft, J.A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. Journal of Histochemistry & Cytochemistry 33(1). 77-79. (1985)
Joung, S., Kim, C., Ahn, C., Jang, K., Boo, S.M. and Oh, H. Simple method for a cell count of the colonial cyanobacterium, Microcystis sp. Journal of Microbiology-Seoul- 44(5). 562. (2006)
Kom, rkov, Jaroslava and imek, K. Unicellular and colonial formations of picoplanktonic cyanobacteria under variable environmental conditions and predation pressure. Algological Studies 109(1). 327-340. (2003)
Lalezary, S., Pirbazari, M. and McGuire, M.J. Oxidation of five earthy-musty taste and odor compounds. Journal American Water Works Associatio. 62-69. (1986)
Langsrud, S. and Sundheim, G. Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound. Journal of Applied Bacteriology 81(4). 411-418. (1996)
Lin, T.-F., Chang, D.-W., Lien, S.-K., Tseng, Y.-S., Chiu, Y.-T. and Wang, Y.-S. Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. Journal of Water Supply: Research and Technology—AQUA 58(8). 539. (2009)
Ma, M., Liu, R.P., Liu, H.J. and Qu, J.H. Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation. Journal of Hazardous materials 217. 279-285. (2012)
Maatouk, I., Bouaı̈cha, N., Fontan, D. and Levi, Y. Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant. Water Research 36(11). 2891-2897. (2002)
Maizels, M. and Budde, W.L. A LC/MS Method for the determination of cyanobacteria toxins in water. Analytical Chemistry 76(5). 1342-1351. (2004)
Marie, D., Vaulot, D. and Partensky, F. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Applied and Environmental Microbiology 62(5). 1649-1655. (1996)
Montiel, A. and Welté, B. Preozonation coupled with flotation filtration: Successful removal of algae. Water Science and Technology 37(2). 65-73. (1998)
Newcombe, G., Cook, D., Brooke, S., Ho, L. and Slyman, N. Treatment options for microcystin toxins: Similarities and differences between variants. Environmental Technology 24(3). 299-308. (2003)
Newcombe, G., House, J., Ho, L., Baker, P. and Burch, M. Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. WQRA. (2010)
Nicholson, B.C., Rositano, J. and Burch, M.D. Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine. Water Research 28(6). 1297-1303. (1994)
Oliver, R.L. Flotation and sinking in gas-vacuolate cyanobacteria. Journal of Phycology 30(2). 161-173. (1994)
Otsuka, S., Suda, S., Li, R., Matsumoto, S. and Watanabe, M.M. Morphological variability of colonies of Microcystis morphospecies in culture. The Journal of General and Applied Microbiology 46(1). 39-50. (2000)
Ozaki, K., Ohta, A., Iwata, C., Horikawa, A., Tsuji, K., Ito, E., Ikai, Y. and Harada, K.-i. Lysis of cyanobacteria with volatile organic compounds. Chemosphere 71(8). 1531-1538. (2008)
Plummer, J. and Edzwald, J. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation. Aqua 51. 307-318. (2002)
Porter, K. and Feig, Y.S. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25(5). (1980)
Reynolds, C. Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578(1). 37-45. (2007)
Reynolds, C.S. and Jaworski, G.H.M. Enumeration of natural Microcystis populations. British Phycological Journal 13(3). 269-277. (1978)
Rodríguez, E., Onstad, G.D., Kull, T.P., Metcalf, J.S., Acero, J.L. and von Gunten, U. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Research 41(15). 3381-3393. (2007)
Rodriguez, E.B. and Rodriguez-Amaya, D.B. Formation of apocarotenals and epoxycarotenoids from β-carotene by chemical reactions and by autoxidation in model systems and processed foods. Food Chemistry 101(2). 563-572. (2007)
Rutala, W.A. and Weber, D.J. Uses of inorganic hypochlorite (bleach) in health-care facilities. Clinical Microbiology Reviews 10(4). 597-610. (1997)
Sharma, V.K., Triantis, T.M., Antoniou, M.G., He, X., Pelaez, M., Han, C., Song, W., O’Shea, K.E., de la Cruz, A.A., Kaloudis, T., Hiskia, A. and Dionysiou, D.D. Destruction of microcystins by conventional and advanced oxidation processes: A review. Separation and Purification Technology 91(0). 3-17. (2012)
Shen, H. and Song, L. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia 592(1). 475-486. (2007)
Sivaganesan, M., Adcock, N. and Rice, E. Inactivation of Bacillus globigii by chlorination: a hierarchical Bayesian model. Journal of water supply: research and technology. AQUA 55(1). 33-43. (2006)
Slater, G.P. and Blok, V.C. Volatile compounds of the cyanophyceae—a review. Water Science & Technology 15(6-7). 181-190. (1983)
Sommerburg, O., Langhans, C.-D., Arnhold, J., Leichsenring, M., Salerno, C., Crifò, C., Hoffmann, G.F., Debatin, K.-M. and Siems, W.G. β-Carotene cleavage products after oxidation mediated by hypochlorous acid—a model for neutrophil-derived degradation. Free Radical Biology and Medicine 35(11). 1480-1490. (2003)
Suffet, I.H., Khiari, D. and Bruchet, A. The drinking water taste and odor wheel for the millennium: Beyond geosmin and 2-methylisoborneol. Water Science and Technology 40(6). 1-13. (1999)
Tung, S.C., Lin, T.-F., Liu, C. and Lai, S. The effect of oxidants on 2-MIB concentration with the presence of cyanobacteria. Water science and technology: a journal of the International Association on Water Pollution Research 49(9). 281. (2004)
USEPA. Creating a cyanotoxin target list for the unregulated contaminant monitoring rule. (2001)
USEPA. Cyanobacteria and cyanotoxins information for drinking water systems. (2012)
Van Wichelen, J., van Gremberghe, I., Vanormelingen, P. and Vyverman, W. The importance of morphological versus chemical defences for the bloom-forming cyanobacterium Microcystis against amoebae grazing. Aquatic Ecology 46(1). 73-84. (2012)
Veldhuis, M.J., Cucci, T.L. and Sieracki, M.E. Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. Journal of Phycology 33(3). 527-541. (1997)
Watson, S.B. Aquatic taste and odor: a primary signal of drinking-water integrity. Journal of Toxicology and Environmental Health, Part A 67(20-22). 1779-1795. (2004)
White, G.C. Handbook of chlorination. Van Nostrand Reinhold Company. (1986)
Wu, Z.-x., Gan, N.-q., Huang, Q. and Song, L.-r. Response of Microcystis to copper stress – Do phenotypes of Microcystis make a difference in stress tolerance? Environmental Pollution 147(2). 324-330. (2007)
Wu, Z.-x. and Song, L.-r. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz. (cyanobacteria). Phycologia 47(1). 98-104. (2008)
Yang, Z., Kong, F., Shi, X., Zhang, M., Xing, P. and Cao, H. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. Journal of Phycology 44(3). 716-720. (2008)
Yang, Z. and Kong, F.X. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. Journal of limnology 71(1). 61-66. (2012)
Young, C.C., Suffet, I.H., Crozes, G. and Bruchet, A. Identification of a woody-hay odor-causing compound in a drinking water supply. Water Science and Technology 40(6). 273-278. (1999)
Zamyadi, A., Fan, Y., Daly, R.I. and Prevost, M. Chlorination of Microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Research 47(3). 1080-1090. (2013)
Zamyadi, A., Ho, L., Newcombe, G., Bustamante, H. and Prevost, M. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination. Water Research 46(5). 1524-1535. (2012)
Zhang, K.-j., Gao, N.-y., Deng, Y., Zhang, T. and Li, C. Aqueous chlorination of algal odorants: Reaction kinetics and formation of disinfection by-products. Separation and Purification Technology 92(0). 93-99. (2012)
Zhang, K.J., Gao, N.Y., Yen, H.K., Chiu, Y.T. and Lin, T.F. Degradation and formation of wood odorant beta-cyclocitral during permanganate oxidation. Journal of Hazardous materials 194. 362-368. (2011)
Zhang, M., Kong, F., Tan, X., Yang, Z., Cao, H. and Xing, P. Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology and Biotechnology 23(5). 663-670. (2007)
Zohary, T. and Madeira, A.M.P. Counting natural populations of Microcystis aeruginosa: A simple method for colony disruption into single cells and its effect on cell counts of other species. Journal of the Limnological Society of Southern Africa 13(2). 75-77. (1987)
曾韻璇. 前氧化對兩種產毒藍綠菌破壞及其代謝物釋出之研究. 國立成功大學環境工程學系碩士論文. (2008).
連紹凱. 前加氯對三種藍綠菌菌體破壞及其代謝物釋出之研究. 國立成功大學環境工程學系碩士論文. (2008).
邱宜亭. 高錳酸鉀對三種藍綠菌破壞及其代謝物釋出之研究. 國立成功大學環境工程學系碩士論文. (2009).
王奕軒. 自來水中木頭味物質β-cyclocitral之來源及去除之研究. 國立成功大學環境工程學系碩士論文. (2006).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top