跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張筱筑
研究生(外文):Hsiao-chu Chang
論文名稱:體外組織內發熱源附近溫度分佈及熱損傷區域隨時間變化之研究
論文名稱(外文):Time Variation of Temperature Profile and Thermal Lesion Region around a Heat Source in an in vitro Tissue
指導教授:洪賑城
指導教授(外文):Jan-chen Hong
口試委員:洪賑城
口試委員(外文):Jan-chen Hong
口試日期:2016-07-04
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:熱傳體外組織熱療法熱損傷
外文關鍵詞:thermal lesionheat conductionin vitro tissuethermal therapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討體外組織內圓柱型發熱源附近溫度分佈及熱損傷區域隨熱療時間之變化。研究工作包括:1.改良本研究室已有的壓克力載具,以改進熱電偶的定位,並增加溫度量測點;2.修改學長之數學模式,以考量發熱源所發出之熱部份被導線帶走之效應;3.進行體外組織加熱實驗並利用實驗數據迴歸數學模式中之參數;4.將組織內溫度分佈隨時間之變化轉換成組織熱損傷區域隨時間之增加。
先前使用之數學模式中有兩個參數,即導熱度及熱傳係數。本研究增加功率因子作為參數,而導熱度則引用前人之實驗值。因此,參數仍維持二個。非線性數據迴歸的結果顯示,引進功率因子使實驗數據與模式計算值相當吻合,而且大幅降低兩者之間的平均誤差。
本研究以電腦模擬繪出不同時間之溫度分佈,以靜態方式顯示二維溫度分佈隨時間之變化,同時計算並繪出熱損傷區域之增加。此電腦模擬結果可作為以熱療法治療腫瘤時之參考。
Time variation of temperature profile and thermal lesion region around a cylindrical heat source in an in vitro tissue has been studied. The search works include: 1. Modifying an existing acrylic loader to improve the precision of the location of thermocouple and to increase the number of temperature monitoring points; 2. Modifying an existing mathematical model for considering that part of heat from the heat source is taken away by the conducting wire; 3. Conducting experiments in an in vitro tissue (pork liver) and performing nonlinear data regression to obtain the parameters in the model; 4. Using time-variable temperature profiles to calculate the expansion of thermal lesion region.
The existing mathematical model has two parameters, thermal conductivity and heat transfer coefficient. Another parameter, the power factor, was introduced in this study. However, the thermal conductivity was adopted from the literature, making the modified model still a two-parameter one. Results from nonlinear regression show that introducing the power factor makes the model calculations agree well with experimental data, and decreases significantly the average error.
The simulation results were used to show the time-variation of temperature profiles that were further used to calculate the expansion of thermal legion region during thermal therapy. The results of computer simulation could be a good reference for tumor-treating by thermal therapy.
誌謝i
英文摘要ii
中文摘要iv
目錄v
圖目錄vii
表目錄x
標記符號xi
第一章 前言
1.1 熱療法1
1.2 組織中之熱傳導5
1.3 本研究目的7
第二章 數學模式
2.1 圓柱型發熱源附近之熱傳遞及二維溫度分佈9
2.2 熱損傷區域13
第三章 實驗
3.1 實驗裝置與介面16
3.2 實驗步驟18
第四章 結果與討論27
第五章 結論55
參考文獻57
[1] Wanga JC., Shiehb J., Chenc BT., Huangc CW., Chena WS., Chend CS. A study of latent heat effects in temperature profiles and lesion formation. Int J Heat Mass Transfer 2014;71:285-294
[2] Sáncheza S., Bautistab O., Méndez F. Theoretical analysis of coupled thermal and denaturation processes in living tissues subject to a uniform surface heating condition. Int J Heat Mass Transfer 2015;90:728-742.
[3] Shih T., Horng T., Huang H., Ju K., Huang T., Chen P., Ho Y., Lin W. Numerical analysis of coupled effects of pulsatile blood flow and thermal relaxation time during thermal therapy. Int J Heat Mass Transfer 2012;55: 3763-3773.
[4] Gupta P. K., Singh J., Rai K.N. Numerical simulation for heat transfer in tissues during thermal therapy. J Therm Biol 2010; 35:295-301.
[5]Andr W, Nowak H. Magnetism in medicine. Weinheim: Wiley-VCH; 2007.
[6] Gellermann J, Wlodarczyk W, Hildebrandt B, Ganter H, Nicolau A, Rau B, Tilly W, Fahling H, Nadobny J, Felix R, Wust P. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Res 2005;65:5872-5880.
[7] Pennes HH. Analysis of tissue and arterial blood temperature in the resting forearm, J. Appl. Physio. 1948;2:93-122.
[8] Shih TC., Yuan P., Lin W.L., Kou H.S., Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface, Med.Eng. Phys. 2007;9:946-953
[9] Jaunich M., Raje S., Kim K., Mitra K., Guo Z., Bio-heat transfer analysis during short pulse laser irradiation of tissues, Int. J. Heat Mass Transfer 2008;23:5511-5521.
[10] Tung MM., Trujillo M., Molina JL., Rivera M., Berjano E., Modeling the heating of biological tissue based on the hyperbolic heat transfer equation, Math. Comput. Model. 2009;50:665-672.
[11] Liu KC., Chen HT., Investigation for the dual phase lag behavior of bio-heat transfer, Int. J. Therm. Sci. 2010;49:1138-1146.
[12] Liu KC., Wang YN., Chen YS., Investigation on the bio-heat transfer with the dual-phase-lag effect, Int. J. Therm. Sci. 2012;58:29-35
[13] Xu F., Seffen K., Lu T., Non-fourier analysis of skin biothermomechanics, Int. J.Heat Mass Transfer 2008;51:2237-2259.
[14] Xu F., Lu TJ., Seffen KA., Biothermomechanical behavior of skin tissue, Acta Mech. Sin. 2008;1:1-23
[15] Sapareto S. A., Dewey W.C. Thermal dose determination in cancer therapy 1984;10:787-800.
[16] Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human arm. J Appl Physio 1948;1:93-122.
[17] Sreenivasa G, Gellermann J, Rau B, Nadobny J, Schlag P, Deuflhard P, Felix R, Wust P. Clinical use of the hyperthermia treatment planning system hyperplan to predict effectiveness and toxicity. Int J Radiat Oncol Biol Phys 2003;55:407-419.
[18] Marinia P, Guiota C, Baiotto B, Gabriele P. PC-aided assessment of the thermal performances of a MW applicator for oncological hyperthermia. Comput Biol Med 2004;34:3-13.
[19] Gayzik FS, Scott EP, Loulou T. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments. J Biomech Eng Trans ASME 2006;128:268-276.
[20] Chato JC. Heat transfer to blood vessels. ASME J Biomech Eng 1980;110:110-118.
[21] Huang HW, Chan CL, Roemer RB. Analytical solutions of Pennes bio-heat transfer equation with a blood vessels. ASME J Biomech Eng 1994;116:208-212.
[24] Lee PS. Unsteady-state temperature profiles around a cylindrical heat source in a dead tissue. Master Thesis, Tatung University, Taipei, Taiwan, 2009.
[22] Abrahama JP., Hennesseya MP., Minkowycz WJ. A simple algebraic model to predict burn depth and injury. Int Commun Heat Mass Trans 2011; 38:1169-1171
[23] Guptan PK., Singh J., Rai KN. Numerical simulation for heat transfer in tissues during thermal therapy. 2010;35:205-301
[25] Lai YR. Unsteady-state temperature profiles between a heat source and a blood vessel and between two heat sources in an in vitro tissue. Master Thesis, Tatung University, Taipei, Taiwan, 2010.
[26] Lin CT. Two-dimensional unsteady-state temperature profiles around a cylindrical source in an in vitro tissue. Master Thesis, Tatung University, Taipei, Taiwan, 2011.
[27] Chen CH. Experiments and Data Regression for Two-Dimensional Unsteady-State Temperature Profiles around a Cylindrical Heat Source in an in vitro Tissue. Master Thesis, Tatung University, Taipei, Taiwan, 2012.
[28]Chang YP. Transient Temperature Distribution and Expansion of Thermal Lesion Region around a Cylindrical Heat Source in an in vitroTissue. Master Thesis, Tatung University, Taipei, Taiwan, 2014
[29] Valvano JW, Cochran JR, Diller KR. Thermal conductivity and diffusivity of biomaterials measured with self-heating thermistors. Int J of Thermophys 1985;6:301-311.
[30]Goldberg SN, Gazelle GS, Muller PR. A unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR 2000;174:323-331.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top