跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 11:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張鈞凱
研究生(外文):Chang, Chun-Kai
論文名稱:臥箕溢洪道入流場特性之試驗研究 臥箕溢洪道入流場特性之試驗研究 臥箕溢洪道入流場特性之試驗研究
論文名稱(外文):Experimental Study on Inlet Flow Field of Ogee Spillway
指導教授:葉克家葉克家引用關係
指導教授(外文):Yeh, Keh-Chia
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:溢洪道渦流質點影像測速法
外文關鍵詞:spillwayvortexparticle image velocimetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
近年來集集攔河堰在颱洪過後,其臥箕溢洪道之堰面上常有磨損,除可能因穴蝕現象產生之破壞外,另可能因溢洪道前之砂石經由水流渦漩帶起砸落至溢洪道堰面而產生磨損。溢洪道入口之流場為一紊亂之三維流場,流況複雜,過去鮮少探討其流場特性。因此,本研究將利用質點影像測速法沿水深方向及水流方向量測集集堰溢洪道入流流場,藉此探討其流場特性。
就模型試驗可將流場結構分成沿水流及水深方向兩部分作探討。在沿水流方向部分,發現上游階梯底床後存在一主要渦漩(recirculation vortex),其成因是由於階梯結構造成負壓力梯度,驅使自由流向下偏折所致,另由於主要渦旋之產生,在其下方將伴隨著一較小之角落渦旋(corner eddy),而兩渦漩之旋轉方向相反,此可視為一變形之背向階梯流場。於水深方向,因近邊壁及渠心之速度差,在邊壁與階梯頂之交接處產生由上而下之垂直渦旋(vortex tubes),其中心位置由於背斜迎水面及上述渦旋之影響,會以固定角度向下延伸。

In recent years, the ogee spillway weir surface of Chi-Chi Weir often wears after the flood. It is suspected that occurs, in addition to the damage arising from cavitation, abrasion occurs due to the gravels in front of the spillway picked up by flow vortex and dropped on spillway weir surface. Flow field in spillway inlet is complicated and three-dimensional, and few studies can be found in the past. Therefore, this study measures the inflow field of ogee spillway by using the particle image velocimetry to along the horizontal and vertical directions.
The experimental results can be analyzed in the flow direction and in the depth direction. Along the flow direction, we can find a main recirculation vortex appears behind the upstream stepped bed, which is due to sudden cross-sectional expansion behind the stepped structure, and the associated adverse pressure gradient, drivers the flow with downward deflection. In addition, due to the occurrence of the main recirculation vortex, it will be accompanied underneath by a small corner eddy, and the two vortex’s direction of rotation are opposite. It can be considered as a deformed backward-facing step flow field. Along the depth direction, because of the existence of velocity difference between the wall and channel center line, top-down vortex tubes will occur at the intersection of the wall and top of the step. Also, due to the upstream anticline face of the weir and recirculation vortex, the top-down vortex tubes will extend downwardly at a fixed angle.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 XI
第一章、導論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 文獻回顧 2
1.3.1 溢洪道流場相關研究 4
1.3.2 背向階梯流場相關研究 7
1.3.3 質點影像測速法之研究 11
1.4 研究方法 13
1.5 本文組織 13
第二章、PIV法理論簡介 15
2.1 影像處理 15
2.1.1 質點影像分析理論 15
2.1.2 PIV影像計算之誤差 23
第三章、試驗佈置規劃與分析方法 29
3.1 試驗佈置規劃 29
3.1.1 試驗儀器佈置 29
3.1.2 因次分析 35
3.1.3 試驗條件 36
3.1.4 試驗步驟 39
第四章、試驗結果 40
4.1 水流方向PIV量測結果 40
4.2 水深方向PIV量測結果 41
4.3 溢洪道入流流場試驗平均速度之分析 71
第五章、結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 87

1. Abbott, D. E. and Kline, S. J., (1962). “Experimental investigation of subsonic turbulent flow over single and double backward-facing steps”, ASME, Journal of Basic Engineering, Vol. 84D, 317-325.
2. Adrian, R. J., (1991). “Particle-imaging techniques for experimental fluid mechanics”, Ann Rev Fluid Mech, 23, 261-304.
3. Baud, O. and Hager, W.H., (2000). “Tornade vortices in settling tanks”, Journal of Environmental Science and Engineering ,ASCE; 126(2), 189-91.
4. Bradshaw, P. and Wong, F. Y. F., (1972). “The reattachment and relaxation of turbulent shear layer”, Journal of Fluid Mechanics, Vol. 52, 113-135.
5. Daneshfaraz1, R., Vakili, S., Majedi-Asl, M. and Rostami, M., (2012). “Numerical investigation of upstream face slope and curvature of ogee spillway on flow pattern”, Journal of Environmental Science and Engineering A 1, 589-597.
6. Driver, D. M., Seegmiller, H. L., and Marvin, J. G., (1987). “Time-dependent behavior of a reattaching shear layer”, AIAA Journal, Vol. 25, 914-919.
7. Eaton, J. K. and Johnston, J. P., (1981). “A review of research on subsonic turbulent flow reattachment”, AIAA Journal, Vol. 19, 1093-1100.
8. Essel, E. E. and Tachie, M. F. (2014) “Roughness effects on turbulent flow downstream of a backward facing step”, Flow, Turbulence and Combustion, DOI 10.1007/s10494-014-9549-1.
9. Fincham, A. M. and Spedding, G. R., (1997). “Low cost, high resolution DPIV for measurement of turbulent fluid flow”, Experiments in Fluids, Vol. 23, 449-462.
10. Goubergrits, L., Weber, S., Petz, Ch., Hege, H-Ch., Spuler, A., Poethke, J., Berthe, A., and Kertzscher, U., (2009). “Wall-PIV as a near wall flow validation tool for CFD: application in a pathologic vessel enlargement (aneurysm)”, Journal of Visualization, Vol. 12, No. 3, 241-250.
11. Hasan, M. A. Z., (1992). “The flow over a backward-facing step under controlled perturbation: laminar separation”, Journal of Fluid Mechanics, Vol. 238, 73-96.
12. Hecker, G.E. (1984). “Scale effects in modelling vortices.” Proc. Symp.on Scale Effects in Modelling Hydraulic Structures, Technische Akademie Esslingen, ed. H. Kobus, 6, 1-9.
13. Ho, D. K. H., Boyes, K. M., and Donohoo, S. M., (2001). “Investigation of spillway behavior under increased maximum flood by computational fluid dynamics technique”, Proc. 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia. December, 10-14.
14. Huang, H., Dabiri, D., and Gharib, M., (1997). “On errors of digital particle image velocimetry”, Meas. Sci. Tech., Vol. 8, 1427-1440.
15. Huang, H. T., (1998). “An extension of digital PIV-processing to double exposed images”, Exp Fluids 24, 364-372.
16. Huang, W., Pourkashanian, M., Ma, L., Ingham, D.B., Luo, S.B. and Wang Z.G., (2011). “Investigation on the flameholding mechanisms in supersonic flows: backward facing step and cavity flameholder”, Journal of Visualization, 14(1), 63-74.
17. Keane, R. and Adrian, R., (1990). “Optimization of particle image velocimeters, part I, double pulsed systems”, Measurement Science and Technology, Vol. 1, No. 11, 1202-1215.
18. Liang, D. F., Jiang, C. B. and Li, Y. L., (2002). “A combination correlation-based interrogation and tracking algorithm for digital PIV evaluation”, Experiment in Fluids, Vol. 33, 684-695.
19. Martinerie, R., Boillat, J. L., Schleiss, A., and Rizi, A. P., (2007). “Experi- mental study of the gated spillway of the shahryar dam”, Iran Proc.32nd Congress of IAHR, Vol. C2.b-157-O.
20. McDaniel JC, Fletcher DG, Hartfield RJ (1992). “Staged transverse injection into Mach 2 flow behind a rearward-facing-step: a 3D compressible flow test case for hypersonic combustor CFD validation”, AIAA Paper.
21. Morales, V., Tokyay, T. E., and Garcia, M., (2012). ”Numerical modeling of ogee crest spillway and tainter gate structure of a diversion dam on Canar river, ecuador”, International Conference on Water Resources CMWR.
22. Nogueira, J., Lecuona, A., and Rodriguez, P. A., (1997). “Data validation, false vectors correction and derived magnitudes calculation on PIV data”, Measurement Science and Technology, Vol. 8, 1493-1501.
23. Roth, A. and Hager, W., (1999). “Underflow of standard sluice gate.”Exp. Fluids, 27, 339-350.
24. Sartaj, M., Beirami, M. K., and Fooladgar, A., (2001). “Analysis of two-dimensional flow over standard ogee spillway using RNG turbulence model” , 7th International Congress on Civil Engineering.
25. Savage, B. M. and Johnson, M. C., (2001). “Flow over ogee spillway: physical and numerical model case study”, Journal of Hydraulic Engineering, 127(8), 640-649.
26. Theunissen, R., Scarano, F., and Riethmuller, M. L., (2007). “An adaptive sampling and windowing interrogation method in PIV”, Measurement Science Technology, Vol. 18, 275-287.
27. Thomas, M., Misra, S., Kambhamettu, C. and Kirby, J., (2005). “A robust motion estimation algorithm for PIV”, Measurement Science Technology, Vol. 16, 865-877.
28. Spazzini, P. G., Iuso, G., Onorato, M., Zurlo, N., and Cicca, G. M. Di., (2001). “Unsteady behavior of back-facing step flow”, Experiments in Fluids, Vol. 30, 551-561.
29. Westerweel, J., (1994). “Efficient detection of spurious vectors in particle images velocimetry data”, Experiments in Fluids, Vol. 16, 236-247.
30. Willert, C. and Gharib, M., (1991). “Digital particle image velocimetry”, Experiments in Fluids, Vol. 10, 181-193.
31. 陳錫勳 (2003),「過壩水流流量公式之研究」,碩士論文,逢甲大學,土木及水利工程研究所,台灣台中。
32. 黃興閎 (2004),「背向階梯流場之剪流層非穩態特性研究」,碩士論文,國立清華大學動力機械工程研究所,台灣新竹。
33. 楊昇學 (2009),「單一穴蝕氣泡產生與破裂行為之試驗研究」,博士論文,國立交通大學土木工程研究所,台灣新竹。
34. 魏紹唐 (2012),「背階圓柱尾流特性之試驗研究」,碩士論文,國立交通大學土木工程研究所,台灣新竹。
35. 經濟部水利署中區水資源局 (2012),「集集攔河堰初次使用安全評估報告」。
36. 施柏帆 (2013),「PIV應用於紊流場之定量量測與誤差分析」,碩士論文,國立成功大學航空太空工程學系,台灣台南。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top