跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣曉薇
研究生(外文):Hsiao-wei Chiang
論文名稱:穩定孤立電子對在化學鍵結之影響:去氧核醣核酸鹼基對及鹵化甲烷
論文名稱(外文):Stabilization of Lone Pairs Electron in H-bonding of DNA Base Pairs and Halogen-Substituted Methanes
指導教授:王小萍
指導教授(外文):Shao-Pin Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系專班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:54
中文關鍵詞:重新混成現象超共軛現象鹵化甲烷去氧核醣核酸鹼基對
外文關鍵詞:halogenated methaneshyperconjugationrehybridizationDNA base pairs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
藉著密度泛函理論的研究,可發現黃嘌呤二聚物(X2)具有六種可能的結構。透過自然鍵性軌域的計算,可獲得超共軛的未定域化能量,而這個能量大小可作為判斷此六個嘌呤二聚物(X2)的相對穩定性。這些二聚物(X2)的穩定性主要是靠穩定酮基上氧之孤對電子的能力來決定,也就是氧上的孤對電子到氮氫鍵的反鍵結軌域間之超共軛未定域化的現象。除此之外,氮原子的重新混成現象也可用來驗證這些二聚物的氫鍵,但是這個混成現象會被超共軛效應所超越。
在氟取代的甲烷系統中,隨著氟取代數目的增加導致碳氫鍵中碳的混成軌域的s-軌域特徵也會增加。然而,這裡的重新混成效應的影響反而大於負超共軛效應的影響,而成為決定碳氫鍵的強度的主要因素。超共軛效應的削弱是可以被理解的,因為氟原子上的孤對電子主要是由碳氟鍵的負超共軛現象來穩定,相對來說碳氫鍵的負超共軛現象會減少,同樣地在氯取代和溴取代的甲烷中可以觀察到上述的現象。而對於單取代的鹵化甲烷如氟化甲烷、氯化甲烷以及溴化甲烷,其碳氫鍵長是由超共軛現象來決定,此現象在去氧核醣核酸中的鹼基對之發現相同。
Six possible conformations of Xanthine dimers (X2) has been found by density functional theory (DFT) studies. The relative stabilities of the six X2 dimers are determined by the magnitudes of hyperconjugative delocalization energies, which have been obtained by the natural bond orbital (NBO) calculations. The dimers’s stabilities are dominated by the ability to stabilize the lone-pair electrons on the carbonyl oxygen, via hyperconjugative delocalization from the oxygen’s lone-pair to the NH antibonding orbital, n����*NH. The rehybridization of the N-atom can be verified in these H-bonding but its effects are outweighed by the hyperconjugation effects.

In the fluorinated methanes, increase of the degree of fluorine substitution leads to increasing s-character of the carbon’s hybrid orbital in forming the remained C-H bond(s). This rehybridization effect outweighs the negative hyperconjugation in determination the strengths of C-H bond(s). The weakened hyperconjugation effect is understood since the lone-paired electrons on the F-atom(s) are predominantly stabilized by the negative hyperconjugation with the C-F fragments, which in return reduces their tendency of negative hyperconjugation interaction with the C-H bond(s). The same observation has been found for the chlorine and bromine analogues. For the mono-halogenation methanes, CH3X (X=F, Cl, Br), the CH bond lengths are dominated by the hyperconjugation effects as found in DNA base pairs.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
Chapter I. Introduction 1
Chapter II. Theoretical Background 4
2-1 H-bonding and the natural bond orbital (NBO) approach19 4
2-2 H-bonding present in the Watson-Crick base pairing6 4
2-3 Hyperconjugation and Negative Hyperconjugation8-17 --- Stabilization of localized electron pairs in Lewis Structures 5
2-4 Development of the Negative Hyperature2b 6
2-4-1 The Origine 6
2-4-2 The Anionic Hyperconjugation 7
2-4-3 Hyperconjugation-dependent conformational energy 8
2-4-4 The work by Schleyer8-10 9
2-5 Quantization of the hyperconjugation within the NBO approach 9
2-6 Two types of H-bonding26 10
2-7. Theoretical studies of H-bonding 11
Chapter III. Methods of Calculations 13
Chapter IV. Results and Discussion 14
4-1 Structural information obtained from Stabilization Energy (SE)1a 14
4-1-1 Values of SE for dimers calculated for XX、TT and XT dimers 14
4-1-2 Values of SE and some spectroscopic parameters 19
4-2 Values of stabilization energies (SE) and the second order perturbation energies-lowering the energy of lone pair electrons 20
4-3 Stabilization energy and rehybridization 22
4-4 Rationalization of relative H-bonding strengths 23
4-4-1 The role played by the energy gap between electron donor-acceptor bond orbitals: E(i,j)=E(j)-E(i) in Equation 1 24
4-4-2 The role played by the orbital interaction energy: F(i,j) in Equation 1. 26
4-4-3 Tables 29
4-5 Negative Hyperconjugation and C—H bond strength---- Relative ability among halogens in strengthening the C—H bonding 31
4-5-1 Tables 36
Chapter V. Conclusion 38
References 39
1.(a) Kuan-Hua Wang ( 2006 ) “Theoretical Studies of Relative H-Bonding
Strengths and Aromatic Character in Pairing of Nucleobases (Nucleobases = Xanthine, Thymine, Hypoxanthine and Cytosine)”, National Cheng Kung University.
(b) Chun-hung Li ( 2007 ) “Theoretical Characterizations of Relative
H-Bonding Strengths and Aromaticities in Nucleobases (Xanthine, Thymine) Pairing:A Dynamics Study”, National Cheng Kung University.
(c) Wei-shan Chang ( 2006 ) “Theoretical Studies of Effects of Hydrogen Bonding on the Acidity of Abnormal Bases”, National Cheng Kung University.
2. (a) Hong-Song Lin ( 2003 ) “Studies of Carbon-Halogen Bonds in Some CFC、HCFC、HFC and Halon Compounds by Molecular Calculations”, National Cheng Kung University.
(b) Yoan-Ming Liao ( 2001 ) “Studies on the Synthesis of Heterocyclic Compounds with 1,3,4-Oxadiazole”, National Cheng Kung University.
3. Bent, H. A. Chem. Rev. 1961, 61, 275-311.
4. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b) Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566. (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855. (f) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (g) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447-452.
5. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581-3594.
6. Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737-738.
7. Kow, Y. W. Free Radical Biol. Med. 2002, 33, 886-893.
8. Brockway, L. O. J. Phys. Chem. 1937, 41, 185.
9. Schleyer, P. v. R. and Kos, A. J. Tetrahedron 1983, 39, 1141.
10. Schleyer, P. v. R.; Jemmis, E. D. and Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393.
11. (a) Reed , A. E. and Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362; (b) Reed , A. E. and Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434; (c) Salzner, U. and Schleyer, P. v. R. Chem. Phys. Lett. 1992, 190, 401.
12. Friedman, D. S.; Francl, M. M. and Allen, L. C. Tetrahedron 1985, 41, 499.
13. Dixon, D. A.; Fukunaga, T. and Smart, B. E. J. Am. Chem. Soc. 1986, 108, 4027.
14. Fujita, M.; Suzuki, M.; Ogata, K. and Ogura, K. Tetrahedron Lett. 1991, 32, 1463.
15. (a) Pross, A.; Radom, L. and Riggs, N. V. J. Am. Chem. Soc. 1980,
102, 2253; (b) Pross, A.; DeFrees, D. J.; Levi, B. A.; Pollack, S. K.;
Radom, L. and Hehre, W. J. J. O. Chem. 1981, 46, 1693.
16. Wiberg, K. B. and Rablen, P. R. J. Am. Chem. Soc. 1993, 115, 614.
17. Lodwin, P. O. Phys. Rev. 1955, 97, 1474.
18. Bickelhaupt, F. M.; Baerends, E. J. In Rev. Comput. Chem.; Lipkowitz, K. B.; Boyd, D. B., Eds.; Wiley-VCH: New York 2000, 15, 1-86.
19. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073.
20. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends,
E.J.Chem. Eur. J. 1999, 5, 3581-3594.
21. (a) Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. Chem. Phys. Lett. 2003, 369, 248-255; (b) Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 2002, 114, 2194-2197; Angew. Chem. Int. Ed. 2002, 41, 2092-2095.

22. Fonseca Guerra, C.; Baerends, E. J.; Bickelhaupt, F. M. Crystal Growth & Design 2002, 2, 239-245.
23. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
24. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b) Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566; (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855.
25. (a) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447-452.
26. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold F. J. Am. Chem. Soc. 2003, 125, 5973-5987.
27. (a) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253-4264; (b) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105, 10607-10612; (c) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784-1789.
28. (a) Bent, H. A. Chem. Rev. 1961, 61, 275-311; (b) Lemke, F. R.; Galat, K. J.; Youngs, W. J. Organometallics 1999, 18, 1419-1429; (c) Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648-3659; (d) Palmer, M. H. J. Mol. Struct. 1997, 405, 179-191; (e) Palmer, M. H. J. Mol. Struct. 1997, 405, 193-205; (f) Jonas, V.; Boehme, C.; Frenking, G. Inorg. Chem. 1996, 35, 2097-2099; (g) Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201-4209; (h) Kaupp, M.; Schleyer, P. V. R. J. Am. Chem. Soc. 1993, 115, 1061-1073; (i) Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981-1988; (j) Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. 1991, 234, 247-267; (k) Kaupp, M. Chem. Eur. J. 1999, 5, 3631-3643.
29. (a) Lewis, J. P.; Sankey, O. F. Biophys. J. 1995, 69, 1068; (b) Kong, Y. S.; Jhon, M. S. P. O. Löwdin, Int. J. Quantum. Chem. Symp. QB 1987, 14, 189; (c) Nagata, C.; Aida, M. J. Mol. Struct. 1988, 179, 451; (d) Gould, I. R.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 2493; (e) Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965; (f) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol. Struct. Dyn. 1996, 14, 117; (g) Sponer, J.; Hobza, P.; Leszczynski, J.; in Computational Chemistry. Reviews of Current Trends (Ed.: J. Leszczynski), World Scientific Publisher, Singapore, 1996, 185-218; (h) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574; (i) Brameld, K.; Dasgupta, S.; W. A. Goddard III, J. Phys. Chem. B 1997, 101, 4851; (j) Meyer, M.; Sühnel, J. J. Biomol. Struct. Dyn. 1997, 15, 619; (k) Santamaria, R.; VaÂzquez, A. J. Comp. Chem. 1994, 15, 981; (l) Bertran, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159.
30. (a) Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391; (b) Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. in Theoretical Treatment of Hydrogen Bonding (Ed.: D. Hadzi), Wiley, New York 1997; (c) Sirois, S. ; Proynov, E. I. ; Nguyen, D. T. ; Salahub, D. R. J. Chem. Phys. 1997, 107, 6770; (d) Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. 1998, 102, 3782; (e) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089; (f) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837; (g) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793; (h) Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705; (i) Florian, J.; Johnson, B. G. J. Phys. Chem. 1995, 99, 5899; (j) Combariza, J. E.; Kestner, N. R. J. Phys. Chem. 1995, 99, 2717; (k) Civalleri, B.; Garrone, E.; Ugliengo, P. J. Mol. Struct. 1997, 419, 227; (l) Lozynski, M.; Rusinska-Roszak, D.; Mack, H.-G. J. Phys. Chem. 1998, 102, 2899; (m) Chandra, A. K.; Nguyen, M. Chem. Phys. 1998, 232, 299; (n) Paizs, B.; Suhai, S. J. Comp. Chem. 1998, 19, 575; (o) McAllister, M. A. J. Mol. Struct. 1998, 427, 39; (p) Pan, Y. P.; McAllister, M. A. J. Mol. Struct. 1998, 427, 221; (q) Gonzalez, L.; Mo, O.; Yanez, M. J. Comp. Chem. 1997, 18, 1124.
31. Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 1999, 111, 3120; Angew. Chem. Int. Ed. 1999, 38, 2942.
32. (a) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1977, 99, 1316;
(b) Yamabe, S.; Morokuma, K. J. Am. Chem. Soc. 1975, 97, 4458;(c) Morokuma, K. Acc. Chem. Res. 1977, 10, 294.
33. (a) Wheland, G. W. J. Chem. Phys. 1934, 2, 474-481; (b) Cramer, C. J. In Encyclopedia of Computational Chemistry; Schelyer, P. v. R., Ed.; John Wiley & Sons: Berlin, 1998; p.1
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top