跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗賢
研究生(外文):Tsung-Hsien Lin
論文名稱:以布朗動態法模擬與優化電泳拉伸DNA之策略
論文名稱(外文):Design and Optimization of a DNA Electrophoretic Stretching Device Using Brownian Dynamics Simulations
指導教授:謝之真
口試委員:諶玉真王大銘
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:94
中文關鍵詞:布朗動態法電泳拉伸DNA
外文關鍵詞:ElectrophoresisBrownian DynamicsDNAStretching
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們使用布朗動態法(Brownian dynamics)連結有限元素法(finite element method)來設計能夠更有效率地拉伸DNA的微流道裝置。我們希望能將這種新設計應用於基因圖譜技術。我們的設計以Kim 和 Doyle[1] 的漸縮通道裝置為基礎,以電場梯度來拉伸DNA。為了提高DNA的拉伸效率,我們提出兩種在DNA進入漸縮通道前的預處理策略。第一種為先使用漸擴通道來對DNA做漸縮通道對稱軸垂直方向的預拉伸,然後將已經部分拉伸的DNA往漸縮通道對稱軸旋轉,則此DNA能夠於漸縮通道中經歷第二次拉伸。就結果而言,DNA能在進入漸縮通道前就具有較高的拉伸狀態,因此能夠達到較高的拉伸效率。第二種策略為先將DNA做震盪拉伸的預處理,這種預處理在理想情況下能夠有效率地減低DNA的摺疊率,然而這種預處理模式無法明顯地提升DNA之拉伸效率,我們發現原本的預測會錯誤是由於選擇不正確的流場。
我們接著測試我們的設計是否能夠有效地拉伸更大分子量的DNA。發現新設計的拉伸效率會隨分子量增大而逐漸遞減。藉由分析DNA在裝置中的拉伸分布,我們提出另一種新設計。這種新設計主要是利用裝置邊界對DNA的體積排斥力,以降低DNA摺疊的機率。由我們的模擬結果發現即使在更低電場梯度下,這種新設計也能大幅提高大分子量DNA的拉伸效率與拉伸均勻度。

We use Brownian dynamics-finite element method (BD-FEM) to design microfluidic devices that are capable to efficiently and uniformly stretch DNA for the application of gene mapping. Our design is based on the devices proposed by Kim and Doyle[1] that stretches DNA electrophoretically with the electric field gradient generated in a hyperbolic contraction. To enhance DNA stretching, we propose two strategies that pre-condition DNA before they enter the contraction. For the first approach, we pre-stretch DNA in the direction perpendicular to the funnel axis with a expansion geometry. The partially stretched chains are then turned to align with the axial of the funnel, and experience the second stretching. As a result, DNA chains adapt more extended configurations before going into the funnel, and therefore achieve a higher degree of extension. For the second approach, we pre-condition DNA conformation using an oscillating extensional electric field that has been shown to effectively reducing the population of folded DNA at an ideal condition. However, this approach shows negligible effect in our design, and we find that the original prediction was actually wrong due to the erroneous choice of flow filed.
We further examine the efficiency of our design for stretching longer DNA. It is found the performance of the pre-conditioning strategy deteriorates with increasing DNA molecular weight. By analyzing the probability distribution of DNA extension in the device, we propose a new design that utilizes the excluded volume effect of the device boundary to prevent the formation of folded DNA. Our simulation results indeed show that the design with both tricks can provide very uniform, highly stretched DNA even under relatively low field gradient.

目錄
摘要 ..................................................................................................................... i
ABSTRACT .......................................................................................................... ii
目錄 ..................................................................................................................... iv
圖目錄 ................................................................................................................. vii
表目錄 ................................................................................................................ xiv
符號表 ................................................................................................................. xv
希臘符號表 ....................................................................................................... xvii
第一章 緒論 ............................................................................................................... 1
1.1 前言 ............................................................................................................ 1
1.2 重要名詞釋義 ............................................................................................ 1
1.2.1 去氧核糖核苷酸(DNA) .............................................................. 1
1.2.2 堅韌長度(Persistence length) ...................................................... 2
1.2.3 輪廓長度(Contour length) ........................................................... 3
1.2.4 鬆弛時間(Relaxation time) ......................................................... 3
1.2.5 電動力學(Electrokinetics) ........................................................... 4
1.2.6 應變量與應變率(Strain and Strain rate) ..................................... 7
1.2.7 黛博拉數(Deborah number, De) ................................................. 8
1.2.8 初始形狀(Initial configuration) ................................................... 8
1.3 研究動機與目的 ........................................................................................ 9
第二章 文獻回顧 ..................................................................................................... 12
2.1 線性高分子模型 ...................................................................................... 12
2.1.1 非連續空間模型 ............................................................................. 12
2.1.2 連續空間模型 ................................................................................. 13
2.2 理想鏈(Ideal chain)與真實鏈(Real chain) .................................... 15
2.2.1 理想鏈 ............................................................................................. 15
2.2.1.1 一維隨機漫步 ..................................................................... 15
2.2.1.2 二維與三維隨機漫步 ......................................................... 18
2.2.1.3 理想鏈之尺度 ..................................................................... 18
2.2.1.4 高斯鏈(Gaussian Chain) ................................................ 20
2.2.2 真實鏈 ............................................................................................. 21
2.2.2.1 體積排斥(Excluded volume) ......................................... 21
2.2.2.2 Short-range interaction 與 Long-range interaction ........... 24
2.3 蠕蟲鏈(Worm-like chain) ................................................................... 26
2.4 Bead-spring model .................................................................................... 28
2.5 以流場或電場拉伸DNA .......................................................................... 29
2.6 改進DNA拉伸之策略 .............................................................................. 32
2.7 改善以電場拉伸DNA裝置之設計構想 .................................................. 43
第三章 模擬方法 ..................................................................................................... 46
3.1 布朗動態法(BD) ................................................................................. 46
3.2 有限元素法(FEM) .............................................................................. 49
3.3 FEM連結BD ............................................................................................ 52
3.4 時間步階 .................................................................................................. 53
3.5 參數設定測試 .......................................................................................... 54
第四章 結果討論 ..................................................................................................... 57
4.1 漸擴通道與十字通道 .............................................................................. 58
4.1.1 最大拉伸長度 ................................................................................. 61
4.1.2 DNA拉伸分布之分析 .................................................................... 67
4.1.3 DNA拉伸進程分析 ........................................................................ 70
4.1.4 震盪拉伸模型修正 ......................................................................... 72
4.2 不同分子量DNA之拉伸效率比較 .......................................................... 74
4.2.1 最大拉伸長度 ................................................................................. 75
4.2.2 固定速度梯度之最大拉伸長度比較 ............................................. 79
4.3 可能之優化策略 ...................................................................................... 80
4.3.1 最大拉伸長度比較 ......................................................................... 84
第五章 結論與未來展望 ......................................................................................... 90
5.1 結論 .......................................................................................................... 90
5.2 未來展望 .................................................................................................. 91
第六章 參考文獻 ..................................................................................................... 92

1. Kim, J.M. and P.S. Doyle, Design and numerical simulation of a DNA electrophoretic stretching device. Lab on a Chip, 2007. 7(2): p. 213-225.
2. Zimm, B.H., Extension in flow of a DNA molecule tethered at one end. Macromolecules, 1998. 31(18): p. 6089-6098.
3. Kim, J.M. and P.S. Doyle, A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields. Journal of Chemical Physics, 2006. 125(7).
4. Randall, G.C. and P.S. Doyle, DNA deformation in electric fields: DNA driven past a cylindrical obstruction. Macromolecules, 2005. 38(6): p. 2410-2418.
5. Teraoka, I., Polymer solutions : an introduction to physical properties. 2002, New York: Wiley.
6. JING TANG, Singal Molecule DNA Dynamics in Micro- and Nano-Fluidic Device, in Chemical Engineering. 2009, Massachusetts Institute of Technology.
7. Anthony Balducci, Studies of DNA Dynamics in Slit-Like Nanochannel Confinement, in Chemical Engineering. 2003, Carnegie-Mellon University.
8. Henry, D.C., The cataphoresis of suspended particles Part I - The equation of cataphoresis. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1931. 133(821): p. 106-129.
9. Larson, R.G., The rheology of dilute solutions of flexible polymers: Progress and problems. Journal of Rheology, 2005. 49(1): p. 1-70.
10. Squires, T.M. and S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005. 77(3): p. 977-1026.
11. Hu, X., et al., The Use of Microfluidics in Rheology. Macromolecular Materials and Engineering, 2011. 296(3-4): p. 308-320.
12. Shaqfeh, E.S.G., The dynamics of single-molecule DNA in flow. Journal of Non-Newtonian Fluid Mechanics, 2005. 130(1): p. 1-28.
13. Bird, R.B., Dynamics of polymeric liquids. 1987, New York: Wiley.
14. McKinley, G.H. and T. Sridhar, Filament-stretching rheometry of complex fluids. Annual Review of Fluid Mechanics, 2002. 34: p. 375-415.
15. Perkins, T.T., D.E. Smith, and S. Chu, Single polymer dynamics in an elongational flow. Science, 1997. 276(5321): p. 2016-2021.
16. deGennes, P.G., Polymer physics - Molecular individualism. Science, 1997. 276(5321): p. 1999-1999.
17. Slater, G.W., et al., Theory of DNA electrophoresis: A look at some current challenges. Electrophoresis, 2000. 21(18): p. 3873-3887.
18. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research, 2004. 14(6): p. 1137-1146.
19. Flory, P.J., Principles of polymer chemistry. The George Fisher Baker non-resident lectureship in chemistry at Cornell University. 1953, Ithaca: Cornell University Press.
20. Cloizeaux, J.d. and G. Jannink, Polymers in Solution: Their Modelling and Structure. 1990, Clarendon: Oxford Univ. Press.
21. Öttinger, H.C., Stochastic processes in polymeric fluids : tools and examples for developing simulation algorithms. 1996, New York: Springer.
22. Larson, J.W., et al., Single DNA molecule stretching in sudden mixed shear and elongational microflows. Lab on a Chip, 2006. 6(9): p. 1187-1199.
23. Randall, G.C., K.M. Schultz, and P.S. Doyle, Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. Lab on a Chip, 2006. 6(4): p. 516-525.
24. Bustamante, C., et al., ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA. Science, 1994. 265(5178): p. 1599-1600.
25. Long, D., et al., Electrophoresis of polyampholytes. Journal of Chemical Physics, 1998. 108(3): p. 1234-1244.
26. Larson, R.G., The role of molecular folds and ''pre-conditioning'' in the unraveling of polymer molecules during extensional flow. Journal of Non-Newtonian Fluid Mechanics, 2000. 94(1): p. 37-45.
27. Balducci, A. and P.S. Doyle, Conformational preconditioning by electrophoresis of DNA through a finite obstacle array. Macromolecules, 2008. 41(14): p. 5485-5492.
28. Trahan, D.W. and P.S. Doyle, Simulation of electrophoretic stretching of DNA in a microcontraction using an obstacle array for conformational preconditioning. Biomicrofluidics, 2009. 3(1).
29. Marko, J.F. and E.D. Siggia, Stretching DNA. Macromolecules, 1995. 28(26): p. 8759-8770.
30. Jendrejack, R.M., J.J. de Pablo, and M.D. Graham, Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions. Journal of Chemical Physics, 2002. 116(17): p. 7752-7759.
31. Jendrejack, R.M., et al., Shear-induced migration in flowing polymer solutions: Simulation of long-chain DNA in microchannels (vol 120, pg 2513, 2004). Journal of Chemical Physics, 2004. 120(13): p. 6315-6315.
32. Jendrejack, R.M., et al., Effect of confinement on DNA dynamics in microfluidic devices. Journal of Chemical Physics, 2003. 119(2): p. 1165-1173.
33. Heyes, D.M. and J.R. Melrose, Brownian Dynamics Simulations of Model Hard-Sphere Suspensions. Journal of Non-Newtonian Fluid Mechanics, 1993. 46(1): p. 1-28.
34. Foss, D.R. and J.F. Brady, Brownian Dynamics simulation of hard-sphere colloidal dispersions. Journal of Rheology, 2000. 44(3): p. 629-651.
35. Haghgooie, R. and P.S. Doyle, Structural analysis of a dipole system in two-dimensional channels. Physical Review E, 2004. 70(6).
36. Segerlind, L.J., Applied finite element analysis. 1984, New York: Wiley.
37. Underhill, P.T. and P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. Journal of Non-Newtonian Fluid Mechanics, 2004. 122(1-3): p. 3-31.
38. Chen, Y.L., et al., Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. Physical Review E, 2004. 70(6).
39. Cho, J. and K.D. Dorfman, Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. Journal of Chromatography A, 2010. 1217(34): p. 5522-5528.
40. Kang, K.H., et al., Effects of dc-dielectrophoretic force on particle trajectories in microchannels. Journal of Applied

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊