[1] 高涌泉,“形上集:時間的方向”,《科學人》No. 59, 2006.[2] 柯文哲,https://www.youtube.com/watch?v=N0zhdMwD2Z8 – 『生死的智慧:柯文哲 (Wen-je Ko)』,TEDxTaipei, 2013.
[3] Perez, R. and M. Perez, (2009): “A Fundamental Look at Energy Reserves for the Planet” IEA SHC Solar Update, 50, p. 2-3, 2015.
[4] 鄭景尤,http://www.mem.com.tw/article_content.asp?sn=1406200010 –“中/日安裝量上衝下半年太陽能市場需求火熱”, 2014.
[5] 廖學中,“太陽光電產業的新星–鈣鈦礦太陽能電池”,《台灣奈米資訊電子報》, 2014.
[6] US International Energy Agency(IEA) Annual Energy Outlook, 2015.
[7] OpenEI, http://en.openei.org/
[8] International Energy Agency, “Energy Supply Security 2014”.
[9] E. Becquerel, “Mémoire sur les effets électriques produits sous l''influence des rayons solaires”, Compt. Rend. 9, 561-567, 1839.
[10] J. Perlin, “From Space to Earth-The story of Solar Electricity” , AATEC Publications, Ann. Arbor, Michigan, 1999.
[11] S. Sun, Z. Fan, Y. Wang, J. Haliburton, “Organic Solar Cell Optimizations”, J. materials science, 40, 6, 1429 –1443, 2005.
[12] D. Chapin, C. Fuller and G. Pearson, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 25, 5, p.676, 1954.
[13] D. Carlson and C. Wronski, “Amorphous Silicon Solar Cell”, Appl. Phys. Lett., 28, 11, p.671, 1976.
[14] G. Conibeer, “Third-generation Photovoltaics”, Materials Today, 10, p.42-50, 2007.
[15] W. Shockley and J. Queisser, “Detailed Balance Limit of Efficiency of P-N Junction Solar Cells”, J. Appl. Phys., 32, p.510-519, 1961.
[16] “Best Research-Cell Efficiencies” , National Renewable Energy Laboratory, (NREL), Rev. 08-06-2015.
[17] Martin A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar
cell efficiency tables (version 46)”, Prog. Photovolt: Res. Appl., 23, p.805-812, 2015.
[18] N. Espinosa et al., “Solar Cells with One-Day Energy Payback for the Factories of the Future”, Energy Environ. Sci., 5, 5117, 2012.
[19] A. Kojima et al., “Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (2)”, Proc. 210th ECS Meeting, 2006.
[20] A. Kojima et al., “Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131, 17, p.6050-6051, 2009.
[21] J. Im et al., “6.5% Efficient Perovskite Quantum-dot-sensitized Solar Cell”, Nanoscale, 3, 10, p.4088, 2011.
[22] J. Salbeck et al., “Low Molecular Organic Glasses for Blue Electroluminescence” , Synthetic Metals, 91, 1-3, p.209-215, 1997.
[23] H. Kim et al., “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%” , Sci. Rep., 2, p.591, 2012.
[24] M. Lee et al., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites” , Science, 338, 6107,p.643-647, 2012.
[25] J. Noh et al., “Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells” , Nano. Lett., 13, p.1764-1769, 2013.
[26] B. O''regan and M. Grätzel, “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films”, Nature, 353, p.737-740, 1991.
[27] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phy. Lett., 48, p.183-185, 1986.
[28] J. Tsukamoto et al., “A Schottky-barrier Type Solar-cell Using Polyacetylene”, Jpn. J. Appl. Phys., 20, 2, p.127-129, 1981.
[29] http://www.wikiwand.com/zh-tw/PN结
[30] S. Kasap et al., “Springer Handbook of Electronic and Photonic Materials”, Springer Science + Business Media, Inc., 2006.
[31] J. Fan et al., “Perovskite-based low-cost and high-efficiency hybrid halide solar cells”, Photon. Res., 2, 5, p.111-120, 2014.
[32] M. Green et al., “The Emergence of Perovskite Solar Cells”, Nature Photon., 8, 7, p.506-514, 2014.
[33] David B. Mitzi, “Templating and Structural Engineering in Organic-Inorganic Perovskites”, J. Chem. Soc., Dalton Trans., 1, p.1-12, 2001.
[34] C. C. Stoumpos et al., “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties”, Inorg. Chem., 52, 15, p.9019-9038, 2013.
[35] J. Lee et al., “High-Efficiency Perovskite Solar Cells Based on the Black
Polymorph of HC(NH2)2PbI3”, Adv. Mater., 26, 29, p.4991-4998, 2014.
[36] G. E. Eperon et al., “Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells”, Energy Environ. Sci., 7, 3, p.982-988, 2014.
[37] H. Kim et al., “Organolead Halide Perovskite: New Horizons in Solar Cell Research”, J. Phys. Chem. C, 118, 11, p.5615-5625, 2014.
[38] N. K. McKinnon et al., “5-HT3 Receptor Ion Size Selectivity is a Property of the Transmembrane Channel, Not the Cytoplasmic Vestibule Portals”, J. Gen. Physiol., 138, 4, p.453-466, 2011.
[39] B. N. Cohen et al., “Mutations in M2 Alter the Selectivity of the Mouse Nicotinic Acetylcholine Receptor for Organic and Alkali Metal Cations”, J. Gen. Physiol., 100, 3, p.373-400, 1992.
[40] T. Koh et al., “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells”, J. Phys. Chem. C, 118, 30, p.16458-16462, 2014.
[41] M. Green et al., “The emergence of perovskite solar cells”, Nature Photon., 8, 7, p.506-514, 2014.
[42] 章聖愷,《低溫製程高效率鈣鈦礦型太陽能電池》,國立臺灣大學光電工
程學研究所碩士論文,2015.
[43] G. Xiu et al., “Review of Recent Progress in Chemical Stability of Perovskite Solar Cells”, J. Mater. Chem. A, 3, 17, p.8970-8980, 2015.
[44] P. Gao et al., “Organohalide Lead Perovskites for Photovoltaic Applications”, Energy Environ. Sci., 7, 8, p.2448, 2014.
[45] R. Hull, “Properties of Crystalline Silicon”, London: INSPEC, The Institutioiz of Electrical Engineers, p.392, 1999.
[46] K. Feron, “Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer”, IJMS, 13, 12, p.17019-17047, 2012.
[47] V. D’Innocenzo et al., “Excitons Versus Free Charges in Organo-lead Tri-halide Perovskites”, Nature Comms., 5, 2014.
[48] A. Kojima et al., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131, 17, p.6050–6051, 2009.
[49] J. Heo et al., “Efficient Inorganic-organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors”, Nature Photon., 7, 6, p. 486-491, 2013.
[50] J. Bell et al., “Low-temperature Processed Meso-superstructured to Thin-film Perovskite Solar Cells”, Energy Environ. Sci., 6, 6, p.1739, 2013.
[51] M. Liu et al., “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Science, 501, p.395-398, 2013.
[52] G. Eperon et al., “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater., 24, 1, p.151-157, 2013.
[53] N. Jeon et al., “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nat. Mater., 13, 9, p.897-903, 2014.
[54] M. Xiao et al., “A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells”, Angew. Chem., 126, p.10056 –10061, 2014
[55] N. Jeon et al., “Compositional engineering of perovskite materials for high-performance solar cells”, Nature, 517, 7535, p.476-480, 2015.
[56] H. Zhou et al., “Interface engineering of highly efficient perovskite solar cells”, Science, 345, 6196, p.542-546, 2014.
[57] Q. Hu et al., “Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%”, ACS Nano, 8, 10, p.10161-10167, 2014.
[58] Y. Zhou et al., “Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells”, J. Mater. Chem. A, 3, 15, p.8178-8184, 2015.
[59] W. Nie et al., “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science, 347, 6221, p.522-525, 2015.
[60] K. Liang et al., “Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique”, Chem. Mater., 10, 1, p.403-411, 1998.
[61] J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature, 499, 7458, p.316-319, 2013.
[62] J. Im et al., ”Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells”, Nat. Nanotech., 9, 11, p.927-932, 2014.
[63] Z. Xiao et al., “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci., 7, 8, p.2619-2623, 2014.
[64] C. Chiang et al., “Planar heterojunction perovskite/PC[71]BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process”, J. Mater. Chem. A, 2, 38, p.15897-15903, 2014.
[65] Q. Chen et al., “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc.. 136, 2, p.622-625, 2014.
[66] Q. Chen et al., “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells”, Nano. Lett., 14, 7, p.4158-4163, 2014.
[67] R. Sheng et al., “Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition”, J. Phys. Chem. C, 119, 7, p.3545-3549, 2015.
[68] C. Liu et al., “Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process”, ACS Appl. Mater. Interfaces, 7, 17, p.9066-9071, 2015.
[69] M. Liu et al., “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501, 7467, p.395-398, 2013.
[70] O. Malinkiewicz et al., “Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers”, Adv. Energy Mater., 4, 15, 1400345, p.1-9, 2014.
[71] O. Malinkiewicz et al., “Perovskite solar cells employing organic charge-Transport layers”, Nat. Photon., 8, 2, p.128-132, 2013.
[72] L. Gil-Escrig et al., “Efficient photovoltaic and electroluminescent perovskite devices”, Chem. Commun., 51, 3, p.569-571, 2015.
[73] L. Polander et al., “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater., 2, 8, p.081503, 2014.
[74] B. Kim et al., “Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers”, Organic Electronics, 17, p.102-106, 2015.
[75] J. Seo et al., “Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells”, Energy Environ. Sci., 7, 8, p.2642-2646, 2014.
[76] M. Lee et al., “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Science, 338, 6107, p.643-647, 2012.
[77] P. Tiwana et al., “Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells”, ACS Nano, 5, 6, p.5158-5166, 2011.
[78] D. Bi et al., “Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells”, J. Phys. Chem. Lett., 4, 9, p.1532-1536, 2013.
[79] Z. He et al., “Enhanced Power-conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure”, Nature Photon., 6, 9, p.593-597, 2012.
[80] L. Shen et al., “Performance Improvement of TiO2/P3HT Solar Cells Using CuPc as a Sensitizer”, Appl. Phys. Lett., 92, 073307, 2008.
[81] L. Wang et al., “Utilization of Water/alcohol-soluble polyelectrolyte as an electron injection layer for fabrication of high-efficiency multilayer saturated red-phosphorescence polymer light-emitting diodes by solution processing.”, Appl. Phys. Lett., 89, 15, p.151115-151115-3, 2006.
[82] Z. He et al., “Simultaneous Enhancement of Open-circuit Voltage, Short Circuit Current Density, and Fill Factor in Polymer Solar Cells”, Adv. Mater., 23, 40, p.4636-4643, 2011.
[83] S. Ryu et al., “Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature”, J. Mater. Chem. A., 3, 7, p.3271-3275, 2015.
[84] P. Liang et al., “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater., 26, 22, p.3748-3754, 2014.
[85] C. Chen et al., “Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition”, Adv. Mater., 26, 38, p.6647-6652, 2014.
[86] A. Dualeh et al., “Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells”, Adv. Funct. Mater., 24, 21, p.3250-3258, 2014.
[87] M. Saliba et al., “Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskites”, J. Phys. Chem. C, 118, 30, p.17171-17177, 2014.
[88] L. Yan et al., “Effect of PEI cathode interlayer on work function and interface resistance of ITO electrode in the inverted polymer solar cells”, Organic Electronics, 17, p.94-101, 2015.
[89] X. Min et al., “Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work function eletrodes for efficient easy-to-fabricate organic solar cells”, ACS Appl. Mater. Interfaces, 6, 24, p.22628-22633, 2014.
[90] M. Lin et al., “Role of Solution-Processable Polyethylenimine Electrode Interlayer in Fabricating Air-Stable Polymer Light-Emitting Diodes”, Israel J. Chem., 54, 7, p.935-941, 2014.
[91] C. M. Björström et al., “Multilayer formation in spin-coated thin films of low-bandgap polyfluorene: PCBM blends”, J. Phys.: Condens. Matter., 17, p.L529-L534, 2005.
[92] W. Yan et al., “High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization”, RSC Adv., 4, p.33039-33046, 2014.
[93] D. Yuan et al., “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells”, Phys. Chem. Chem. Phys., 17, p. 26653-26658, 2015.
[94] J. Yeoa et al., “Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer”, Nano Energy, 12, p.96-104, 2015.
[95] W. Chen et al., “Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells”, Energy Environ. Sci., 8, p.629-640, 2015.
[96] J. Xi et al., “Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells”, Nanoscale, 7, p.10699-10707, 2015.
[97] F. Hao et al., “Lead-free solid-state organic-inorganic halide perovskite solar cells”, Nat. Photon., 8, p.489-494, 2014.
[98] N. K. Noel et al., “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications”, Energy Environ. Sci., 7, p.3061-3068, 2014.
[99] T. Oku, “Solar Cells- New Approaches and Reviews”, InTech., p.86-87, 2015.