跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖彥朋
研究生(外文):Yen Peng Liao
論文名稱:開始時間改變與注射時間對於動態對比增強磁振造影的影響:參考區域模型與一般動力模型的比較
論文名稱(外文):Study of Onset Time Shift and Injection Duration in DCE-MRI: A Comparison of the Reference Region Model with the General Kinetic Model
指導教授:蕭穎聰劉鶴齡
指導教授(外文):I. T. HsiaoH. L. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學物理暨影像科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
論文頁數:38
中文關鍵詞:動態對比增強磁振造影參考區域模型動脈輸入函數時間解析度
外文關鍵詞:DCE-MRIreference region modelAIFtemporal resolution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
一般利用取樣動脈輸入函數(arterial input function , AIF) 的藥物動力模型已經時常的應用在動態對比增強磁振造影中的藥物動力學分析。然而,由於過低的取樣所造成的動脈輸入函數的不確定性,能夠導致可觀的評估誤差。 利用Yankeelov等人提出的參考區域模型(reference region model, RRM) 可以避免取樣動脈輸入函數。這個研究的目的是評估因為開始時間(onset time)的改變以及注射時間(injection duration) 在DCE-MRI動力學分析中是如何影響生理參數的評估。我們評估了參考區域模型的結果,並且將它與一般利用取樣動脈輸入函數的藥物動力模型比較。兩個方法的結果都利用平均誤差與變異系數來分析。結果顯示,利用參考區域模型可以取得相對於一般動力模型較準確而且穩定的組織轉換常數(Ktrans,TOI)與間隙分率(ve,TOI),但是它的變異係數是比較大的
In the DCE-MRI, sampling of arterial input function (AIF) is required for the analysis with the general kinetic model (GKM). Alternatively, the recently proposed reference region model (RRM) may be applied to avoid the acquisition of AIF. This study aimed to evaluate the influence of the AIF onset time shift and the injection duration, with various sampling intervals, on estimating the physiological parameters in DCE-MRI with the GKM and to compare with the RRM. Computer simulations were performed to assess the mean error (ME) and coefficient of variation (CoV) of Ktrans,TOI and ve,TOI from shifted and dispersed AIF with temporal resolution of 1, 5 and 10 s. With the 5-s sampling, the maximal MEs of Ktrans,TOI were approximately 22 and 0.5% for the GKM and the RRM, respectively. With the 10-s sampling, they raise to around 28 and 0.7%, respectively. The maximal MEs of ve,TOI were under 5% in all cases. However, due to the lower SNR in the reference region, the CoV from the RRM were all higher than the GKM. The results suggested that with compromised temporal resolution, the RRM was relatively less sensitive to the AIF onset shift and the injection duration when compared with the GKM.
FIGURE LIST.......................................... ix
CHAPTER I introduction................................ 1
1.1 Background and Review of Related studies...... 1
1.2 Objective of the Study........................ 3
CHAPTER II Methods and Materials ..................... 4
2. 1 Modeling Shifted and Dispersed AIF.......... 4
2.2 Generation of Tissue Signal Time Curves........... 5
2.3 Quantification of Parameters using GKM and RRM.... 6
CHAPTER III Results................................... 8
3.1 Effect of Onset Time Shift........................ 8
3.2 Effect of Dispersion with Injection Duration...... 9
CHAPTER IV Discussion and Conclusions.................11
FIGURES...............................................14
REFERENCES............................................22
APPENDIX..............................................23
I. Implementation and Comparison of Methods in linical
Dataset............................................23
II. Procedure of Simulation...........................24
1.Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging 2007;26(2):235-249.
2.Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2003;17(5):509-520.
3.Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 2002;16(4):407-422.
4.Benjaminsen IC, Brurberg KG, Ruud EB, Rofstad EK. Assessment of extravascular extracellular space fraction in human melanoma xenografts by DCE-MRI and kinetic modeling. Magnetic resonance imaging 2008;26(2):160-170.
5.Benjaminsen IC, Graff BA, Brurberg KG, Rofstad EK. Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn Reson Med 2004;52(2):269-276.
6.Egeland TA, Gaustad JV, Vestvik IK, Benjaminsen IC, Mathiesen B, Rofstad EK. Assessment of fraction of radiobiologically hypoxic cells in human melanoma xenografts by dynamic contrast-enhanced MRI. Magn Reson Med 2006;55(4):874-882.
7.Vestvik IK, Egeland TA, Gaustad JV, Mathiesen B, Rofstad EK. Assessment of microvascular density, extracellular volume fraction, and radiobiological hypoxia in human melanoma xenografts by dynamic contrast-enhanced MRI. J Magn Reson Imaging 2007;26(4):1033-1042.
8.Lopata RG, van Riel NA. Identifiability analysis of the standard pharmacokinetic models in DCE MR imaging of tumours. Conf Proc IEEE Eng Med Biol Soc 2004;2:1040-1043.
9.Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47(3):601-606.
10.Simpson NE, He Z, Evelhoch JL. Deuterium NMR tissue perfusion measurements using the tracer uptake approach: I. Optimization of methods. Magn Reson Med 1999;42(1):42-52.
11.Yankeelov TE, Cron GO, Addison CL, Wallace JC, Wilkins RC, Pappas BA, Santyr GE, Gore JC. Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE-MRI data. Magn Reson Med 2007;57(2):353-361.
12.Henderson E, Rutt BK, Lee TY. Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magnetic resonance imaging 1998;16(9):1057-1073.
13.Weinmann HJ, Laniado M, Mutzel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiological chemistry and physics and medical NMR 1984;16(2):167-172.
14.Workie DW, Dardzinski BJ. Quantifying dynamic contrast-enhanced MRI of the knee in children with juvenile rheumatoid arthritis using an arterial input function (AIF) extracted from popliteal artery enhancement, and the effect of the choice of the AIF on the kinetic parameters. Magn Reson Med 2005;54(3):560-568.
15.Cheng HL. T1 measurement of flowing blood and arterial input function determination for quantitative 3D T1-weighted DCE-MRI. J Magn Reson Imaging 2007;25(5):1073-1078.
16.Wang Y, Huang W, Panicek DM, Schwartz LH, Koutcher JA. Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data. Magn Reson Med 2008;59(5):1183-1189.
17.Evelhoch JL. Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 1999;10(3):254-259.
18.Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, Price RR, Gore JC. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magnetic resonance imaging 2005;23(4):519-529.
19.Yankeelov TE, DeBusk LM, Billheimer DD, Luci JJ, Lin PC, Price RR, Gore JC. Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T. J Magn Reson Imaging 2006;24(5):1140-1147.
20.Yang C, Karczmar GS, Medved M, Stadler WM. Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 2004;52(5):1110-1117.
21.Yang C, Karczmar GS, Medved M, Stadler WM. Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 2007;58(6):1266-1275.
22.Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005;54(3):507-512.
23.Eliat PA, Dedieu V, Bertino C, Boute V, Lacroix J, Constans JM, de Korvin B, Vincent C, Bailly C, Joffre F, de Certaines J, Vincensini D. Magnetic resonance imaging contrast-enhanced relaxometry of breast tumors: an MRI multicenter investigation concerning 100 patients. Magnetic resonance imaging 2004;22(4):475-481.
24.Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PC. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 2003;49(1):47-60.
25.Meyer RA, Towse TF, Reid RW, Jayaraman RC, Wiseman RW, McCully KK. BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions. NMR in biomedicine 2004;17(6):392-398.
26.Lankester KJ, Taylor JN, Stirling JJ, Boxall J, d'Arcy JA, Collins DJ, Walker-Samuel S, Leach MO, Rustin GJ, Padhani AR. Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Magn Reson Imaging 2007;25(4):796-805.
27.Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 1995;33(4):564-568.
28.Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44(3):466-473.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top