跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘怡蓉
研究生(外文):Yi-rong Pan
論文名稱:農桿菌於紅豆胚軸基因轉殖所誘發之黃化反應
論文名稱(外文):Agrobacterium-induced necrotic reaction in azuki bean(Vigna angularis Willd. KS8) gene transfer
指導教授:程台生
指導教授(外文):Tai-sheng Cheng
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:自然科學教育學系碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:紅豆轉殖黃化反應農桿菌
外文關鍵詞:azuki beanAgrobacterium tumefaciensnecrotic reactiontransformation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
豆科植物基因轉殖因為組織的再生能力不佳,或農桿菌的感染效果不好,使得豆科植物農桿菌基因轉殖的效率向來都很低。紅豆則是少數豆科植物,可以在組織培養中具備良好再生能力的食用豆科作物。本研究首先仿照Yamada et al. (2001)的方法,建立紅豆高雄8號(KS8)上胚軸的組織培養系統,從切離胚軸經癒傷組織,形成芽再發根,全部需時約30-45天。雖然,利用切離胚軸進行農桿菌基因轉殖研究,GUS基因的表現無礙;但是,胚軸切面細胞黃化及壞死情形嚴重,使得農桿菌基因轉殖效率降低。感染時使用低濃度(OD600 = 0.1-0.2 vs. 0.4-0.5)農桿菌並不影響GUS基因的表現,但是對減輕細胞黃化及壞死情形的幫助有限。使用組織化學染色及影像處理軟體,偵測胚軸切面細胞的H2O2、木質素及超氧陰離子累積,發現黃化現象與這些因子有關。H2O2的釋放呈現雙相,第一個高峰期在感染後2 hr,第二個高峰期在感染後12 hr。
抗氧化物GSH、DTT、維生素C,微量元素Se和半胱胺酸,只有維生素C有促進癒傷組織細胞生長的功能;半胱胺酸可以減輕黃化現象,但用量>300 mgL-1時GUS基因的表現受到抑制。其它物質對減輕黃化或降低H2O2、超氧陰離子累積,並無明顯功效。細胞膜NADPH氧化�“磻蹌浴PI (diphenylene iodonium)能降低約32% H2O2、20%超氧陰離子的累積。雖然,DPI對細胞黃化減輕能力有限;但是,DPI可以提昇胚軸切面細胞GUS基因的表現。有關DPI在紅豆胚軸農桿菌基因轉殖的功能以及作用機制,則須要進一步深入探討。
Legumes are very difficult to transform than other crops because unlike transformation in other organisms, the regeneration system for some legume species is currently not available. Although the most commonly transformation for legumes is based on infection by Agrobacterium tumefaciens, however tissue necrosis and cell death are seriously problems in damage for the success of legume transformation. According to Yamada et al. (2001), we established azuki bean (Vigna angularis Willd) hypocotyls regeneration system for cultivar KS8, the plantlets can be generated within 30-45 days in tissue culture. Agrobacterium-mediated azuki bean hypocotyls gene transfer showed normal transient GUS gene expression, Agrobacterium-induced hypersensitive necrotic reaction in plant cells are seriously problems. Infection with low bacterium density has no apparent improvement in elimination of this tissue necrotic reaction. Histochemical detection for reactive oxygen species (ROS, superoxide, hydrogen peroxide) and lignin accumulation on these necrotic cells revealed that tissue necrosis is affected by ROS production. Hydrogen peroxide production is a biphasic response, the first H2O2 production occurred at 2 h after infection, the second major production happened at 12 h during coclutivation.
Antioxidants, such as DTT, GSH, Se, vitamin C, and L-cysteine were incorporated into culture media or bacterium broths in order to reduce tissue necrotic reaction during coclutivation in azuki bean gene transfer. Vitamin C improved callus growth and L-cysteine was the only antioxidant used in our studies that reduced tissue necrosis. However, GUS gene expression is inhibited by using large amount of L-cysteine (>300 mgL-1) although tissue necrosis can be improved dramatically Diphenylene iodonium (DPI) a specific inhibitor for flavoenzyme, such as NADPH oxidase and NADH oxidase was tested for its possible function in improvement Agrobacterium-mediated azuki bean gene transfer. DPI reduced H2O2 accumulation by 32% and superoxide production for 20%, although tissue necrotic reaction was slightly affected by DPI, GUS gene expression was increased. The possible mechanism and useful theory for DPI in Agrobacterium- mediated azuki bean gene transfer are currently under investigation.
中文摘要 ………………………………………………………………………… ii
Summary ………………………………………………………………………… iii
誌 謝 ………………………………………………………………………… vi
目 次 ………………………………………………………………………… v
圖 次 ………………………………………………………………………… vi
表 次 ………………………………………………………………………… vii
第一章 緒論…………………………………………………………………… 1
第一節 農桿菌紅豆胚軸基因轉殖系統……………………………………… 3
第二節 植物體內活性氧產生與功能………………………………………… 8
第三節 降低組織壞死與提昇農桿菌轉殖效率的研究……………………… 18
第二章 農桿菌對紅豆胚軸超氧陰離子及過氧化氫的誘發作用…………… 33
第三章 影響農桿菌紅豆胚軸轉殖組織存活與轉殖效率的研究…………… 60
第四章 紅豆胚軸DPI前處理對農桿菌轉殖的影響………………………… 76
第五章 綜合討論……………………………………………………………… 98
第一節 紅豆胚軸農桿菌基因轉殖研究所遭遇的困難……………………… 100
第二節 紅豆胚軸農桿菌基因轉殖研究的新方向…………………………… 104
戴國興、鄭隨和(1990):栽培豆科作物之組織培養。中華農學會報。新149:42-52。

戴國興、鄭隨和(1992):紅豆癒合組織之再分化試驗。中華農學會報。新160:55-62。

Allan AC, Fluhr R (1997). Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559-1572.

Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI (1999). Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduced ABA-induced cytoplasmic calcium rises in guard cells. Plant Cell 11:1785-1796.

Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.

Asada K, Takahashi M (1987). Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (Topics in Photosynthesis) (Vol. 9) (Kyle, D.J. et al., eds), pp. 227-287, Elsevier.

Baker CJ, Orlandi EW (1995). Active oxygen in plant pathogenesis. Annual Review of Phytopathology 33:299-321.

Barna B., Adam AL, Kiraly Z (1997). Increased levels of cytokinin induced tolerance to necrotic diseases and various oxidative stress causing agents in plants. Phyton 37:25-31.

Barwale U, Kerns H, Widholm J (1986). Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167:473-481.

Bernards MA (2002). Demystifying suberin. Canadian Journal of Botany 80:227-240.

Bhalla PL, Smith N (1998). Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea var. botrytis. Mol. Breed 4: 531-541.

Bhattacharjee S (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science 89:1113-1121.

Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992). Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol. Biol. 18:301-313.

Binns AN (1990). Agrobacterium-mediated gene delivery and the biology of host range limitations. Physiol. Plant 79:135-139.

Birch RG (1997). Plant transformation: Problems and strategies for practical application. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:297-326.

Bolwell GP (1996). The origin of the oxidative burst in plants. Biochemical Society Transactions 24:438-442.

Bolwell GP, Wojtaszek P (1997). Mechanisms for the generation of reactive oxygen species in plant defence – broad perspective. Physiol. Mol. Plant Pathol. 51:347-366.

B�尒tinger P, Steinmetz A, Schieder O, Pickardt T (2001). Agrobacterium-mediated transformation of Vicia faba. Molecular Breeding 8:243-254.

Boveris AE, Cadenas E (1973). Mitochondrial generation of H2O2. Biochem. J. 138:707-716.

Bowler C, Van Camp W, Van Montagu M., Inze D (1994). Superoxide dismutase in plants. CRC Crit. Rev. Plant Sci. 13:199-210.

Byrne MC, McDonnell RE, Wright MS, Carnes MG (1987). Strain and cultivar specificity in the Agrobacterium-soybean interaction. Plant Cell Tissue Organ Cult. 8:3-15.

Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002). Agrobacterium -mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J. Biosci. 27:495-502.

Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann HJr, Van Montagu M, Inz�� D, Van Camp W (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic plants. Proc. Natl. Acad. Sci. USA 95:5818-5823.

Charles SA, Halliwell B (1980). Effect of hydrogen peroxide on spinach chloroplast fructose bisphosphatase. Biochem. J. 189:373-381.

Chen Z, Shilva H, Klessig RF (1993). Active oxygen species in the induction of plant systemic acquired resistance by SA. Science 262:1883-1886.

Christianson M, Warnick D, Carlson P (1983). A morphogenetically competent soybean suspension culture. Science 222:632-634.

Christou P (1997). Biotechnology applied to grain legumes. Field Crops Research 53:83-97.

Cho H-J, Farrand SK, Noel GR, Widholm JM (2000). High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195-204.

Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006). Functions of amine oxidases in plant development and defence. Trends in Plant Sci. 11:80-88.

Das DK, Reddy MK, Upadhyaya KC, Sopory SK (2002). An efficient leaf-disk culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant cell Rep. 20: 999-1005.

Dat J, Van Breusegerm F, Vandenabeele S, Vranova E, Van Montagu M, Inze D (2000). Active oxygen species and catalase during plant stress response. Cell. Mol. Life Sci. 57:779-786.

De Block M, Herrera-Estrella L, van Montagu M, Schell J, Zambryski P (1984). Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3:1681-89.

Degousie H, Triantaphilides C, Montillet JL (1994). Involvement of oxidative process in the signaling mechanism leading to the activation of glyceollin synthesis in soyabean (Glycine haase). Plant Physiol. 104:945-952.

Delzer BW, Somers DA, Orf JH (1990). Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to II. Crop Sci. 30:320-322.

Deng W, Pu X-A, Goodman RN, Gordon MP, Nester EW (1995). T-DNA genes responsible for inducing a necrotic response on grape vines. Mol. Plant-Microbe Interact. 8:538-548.

Desikan R, Barnett EC, Harcock JT, Neill SJ (1998). Harpin and hydrogen peroxide induced the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J. Exp. Bot. 49:1767-1771.

Devasagayam TPA, Kamat JP (2002). Biological significance of singlet oxygen. Indian J. Exp. Biol. 40:680-692.

Ditt R, Nester EW, Comai L (2001). The plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 98: 10954-10954.

Doke N (1997). The oxidative burst: Roles in signal transduction and plant stress. In Oxidative Stress and Molecular Biology of Antioxidative Defense (ed. Scandalios, J. G.), Cold Spring Harbor Laboratory Press, NY, USA, pp. 785-813.

Doke M, Miura Y, Leandro MS, Kawakita K (1994). Involvement of superoxide in signal transduction: Responses to attack by pathogens, physical and chemical shocks and UV-irradiation. In Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants (eds Foyer CH, Mullineauxe PM), CRC Press, Boca Raton, FL, USA, pp. 177-197.

Dy�� F, Berthelot K, Griffon B, Delay D, Delmotte FM (1997). Alkylsyring- amides, new inducers of Agrobacterium tumefaciens virulence genes. Biochimie 79:3-6.

Federico R, Angelini R (1991). Polyamine catabolism in plants. In Biochemistry and Physiology of Polyamines in Plants (Slocum, R.D. and Flores, H.E., eds), pp. 41–56, CRC Press.

Finer JJ, Cheng TS, Verma D-Pal S (1996). Soybean Transformation: Technologies and Progress, In: Soybean Genetic, Molecular Biology and Biotechnology, DSP Verma and RC Shoemaker eds., CAB International, England, p249-262.

Finer JJ, McMullen MD (1991). Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell and Develop Biol - Plant 27P:175-182.

Finer JJ, Nagasawa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell, Tissue and Organ Culture 15:125-136.

Finnegan J, McElroy D (1994). Transgene inactivation: plants fight back! Biotechnology 12: 883-888.

Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torresk MA, Linstead P, Costa S, Brownlee C, Jonesk JDG, Davies JM, Dolan L (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442-446.

Forman HJ, Torres M (2001). Signaling by the respiratory burst in macrophages. IUBMB Life 51: 365-371.

Garcia JA, Hille J, Goldbach R (1986). Transformation of cowpea Vigna unguiculate cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Science 44:37-46.

Ge K, Wang Y, Yuan X, Huang P, Yang J, Nie Z, Testa D, Lee N (1989). Plantlet regeneration from protoplasts isolated from mesophyll cells of adzuki bean (Phaseolus angularis, Wight). Plant Science 63:209-216.

Geisler M, Kleczkowski LA, Karpinski S (2006). A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. The Plant Journal 45:384-398.

Gelvin SB (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:223-256.

Gheysen G, Angenon G, Van Montague M (1998). Agrobacterium-mediated plant transformation: A scientifically intriguing story with significant application. In: K Lindsey (ed) Transgenic plant research. Harwood Academic Press, The Netherlands. pp.1-33.

Goodman RN, Novacky AJ (1994). The hypersensitive reaction in plants to pathogens. A resistant phenomenon. APS PRESS, St. Paul, Minnesota, p. 244.

Gosti F, Beandoin N, Serizet C, Webb AAR, Vertanian N, Giraudat T (1999). AB11 protein phosphatase 2C is a negative regulator of ABA signalling. Plant Cell 11:1897-1903.

Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000). The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. The Plant Journal 23:441-450.

Gustavo AR, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-Pardo C (1998). Agrobacterium tumefaciens: A natural tool for plant transformation. Electronic J. Biotechnol. V.1 http://www/ejb.org/content/vol1/issue3/full/1

Hansen G, Das A, Chilton MD (1994). Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl. Acad. Sci. USA 91:7603-7607.

Hansen G, Wright MS (1999). Recent advances in transformation of plants. Trends in Plant Sci. 4: 226-231.

Hansen G (2000). Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant-Microbe Interact. 13:649-657.

Hiei Y, Komari T, Kubo T (1997). Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol. 35: 205-218.

Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff D A, Re DB, Fraley RT, Horsch RB (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Biotechnology 6:915-922.

Hirt H (1997). Multiple role of MAP kinase in plant signal transduction. Trends in Plant Sci., 2:11-15.

Hobbs SLA, Jackson JA, Mahon JD (1989). Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens Plant Cell Rep. 8:274-277.

Holland PC, Clark MG, Bloxham DP, Lardy HA (1973). Mechanism of action of the hypoglycemic agent diphenyleneiodonium J. Biol. Chem. 248:6050-6056.

Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A (1984). Inheritance of functional foreign genes in plants. Science 223:496-98.

Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu GH (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 133:170-181.

Ivenish G, Valeina A, Ozol D (1995). Induction of ascorbate peroxidase- activity in stressed pine (Pinus sylvestsis L.) needles – A putative role for ethylene. Plant Sci. 112:167-173.

Ivenish G, Tillberg EJ (1995). Stress-induced ethylene biosynthesis in pine needles: A search for putative ACC-independent pathway. Plant Physiol. 145:308-317.

Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001). Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)─a recalcitrant grain. Plant Sci. 161:239-247.

James, C. (2006). Highlights of Global Status of Commercialized Biotech/GM Crops: 2005. ISAAA Briefs No. 34-2005. ISAAA: Ithaca, NY.

Jiang K, Meng YL, Feldman LJ (2003). Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429-1438.

Jones AM, Dangl JL (1996). Logjam at the styx: Programmed cell death in plants. Trends in Plant Sci. 1:114-119.

Jones OTG (1994). The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells. Bioassays 16:919-923.

Jordan MC, Hobbs SLA (1994). The transformation of legumes using Agrobacterium tumefaciens. In Biotechnological applications of plant cultures (Shargool, PD, Ngo TT, eds.), CRC press, Boca Raton. pp.61-76.

Joo JH, Bae YS, Lee JS (2001). Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126:1055–1060.

Khalafalla MM, El-Shemy HA, Mizanur RS, Teraishi M, Teraishi M, Ishimoto M (2005). Recovery of herbicide-resistant Azuki bean [Vigna angularis (Wild.), Ohwi & Ohashi] plants via Agrobacterium-mediated transformation. African Journal of Biotechnology 4:61-67.

Knight H, Trewavan AJ, Knight MR (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489-503.

Ko T-S, Lee S, Krasnyanski S, Korban SS (2003). Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor. Appl. Genet. 107:439-447.

Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996). Vectors carrying two different T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal 10: 165-174.

Kovtun Y, Chier WL, Taha G, Sheen J (2000). Functional analysis of oxidative stress activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. U. S. A. 97:2940-2945.

Kuta DD, Tripath L (2005). Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. African J of Biotech. 4:752-757.

Kuzniak E, Urbanek H (2000). The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiologiae Plantarum 22:195-203.

Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22:2623-2633.

Lamb D, Dixon RA (1997). The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275.

Laxalt AM, Munnik T (2002). Phospholipid signalling in plant defence. Curr. Opin. Plant Biol. 5:332-338.

Leon J, Lawton MA, Raskin I (1995). H2O2 stimulates salicylic acid biosynthesis in tobacco. Plant Physiol. 108:1673-1678.

Li Y, Trush MA (1998) Diphenyleneiodonium, an NAD (P) H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 253:295-299.

Li H, Wylie SJ, Jones MGK (2000). Transgenic yellow lupin (Lupinus luteus). Plant Cell Reports 19:634-637.

Liszkay A, van der Zalm E, Schopfer P (2004). Production of reactive oxygen intermediates (O2•–, H2O2, and •OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136:3114–3123.

Lumpkin TA, McClary DC (1994) Azuki bean: botany, production and uses. CAB International, Wallingford, Oxford shire, U.K.

MacRobbie EA (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B Biol Sci 353:1475-1488.

Mahalingam R, Fedoroff N (2003). Stress response, cell death and signaling: the many faces of reactive oxygen species. Physiologia Plantarum 119:56-68.

Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001). Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on standard Agrobacterium transformation vector. Mol. Breed. 7:195-202.

McAinsh MR, Clyton H, Mansfield TA, Hetherington AM (1996). Changes in stomatal behaviours and guard cell cytoplasmic free calcium in respect to oxidative stress. Plant Physiol. 111:1031-1042.

McKently AH, Moore GA, Doostdar H, Niedz RP (1995). Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants. Plant Cell Reports 14:699-703.

McKersie BD (1996). Oxidative stress. http://www.agronomy.psu.edu/Courses/AGRO518/ Oxygen.htm

Mercuri A, Benedetti LD, Burchi G, Schiva T (2000). Agrobacterium-mediated transformation of African violet. Plant Cell Tissue and Organ culture 60:39-46.

Meurer CA, Dinkins RD, Collins GB (1998). Factors affecting soybean cotyledonary node transformation. Plant Cell Rep. 18:180-186.

Mehdy MC (1994). Active oxygen species in plant defense against pathogens. Plant Physiol. 105:467-472.

Mittler R (2004). Reactive oxygen gene network of plants. Trends in Plant Sci. 9:490-498.

Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.

M�幨ler, IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:561-591.

Mullineaux P, Karpinski S (2002). Signal transduction in response to excess light: getting out of the chloroplast. Curr. Opin. Plant Biol. 5:43-48.

Munnik T, Irvine RF, Musgrave A (1998). Phospholipid signaling in plants. Biochim Biophys Acta 1389:222-272.

Neill S, Desikan R, Clarke A, Hurst RD, Hancock JT (2002a). Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany 53:1237-1247.

Neill S, Desikan R, Hancock J (2002b). Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5:388-395.

Neill S, Desikan R, Clarke A, Harcock J (1999). H2O2 signalling in plant cells, In Plant Responses to Environmental Stress (eds Smallwood M F, Calvert C M, Bowles DJ), Biol. Sci. Pub. Oxford, pp. 59–64.

Olhoft PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep. 20:731-737.

Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 20:706-711.

Ortega X, Perez LM (2001). Participation of the phosphoinositide metabolism in the hypersensitive response of Citrus limon against Alternaria alternata. Biol Res 34: 43-50

Overmyer K, Touminen H, Kettunen R, Betz C, Langebartels C, Sandermann Jr.H, Kangasjarvi J (2000). Ozone sensitive Arabidopsis red, mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependant cell death. J. Plant Cell 12:1849-1861.

Overmyer K, Brosche´ M, Kangasja J (2003). Reactive oxygen species and hormonal control of cell death. Trends in Plant Sci. 8:335-342.

Palanichelvam K, Oger P, Clough SJ, Cha C, Bent AF, Farrand SK (2000). A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol Plant Microbe Interact 13:1081-1091.

Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T (1984). Direct gene transfer to plants. EMBO J. 3:2717-22.

Pei Z-M, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731-734.

Penza R, Lurquin PF, Filippone E (1991). Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: Application to cowpea (Vigna unguiculate Walp.). J. Plant Physiol. 138:39-42.

Perl A, Lotan O, Abu-Abied M, Holland D (1996). Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Natur Biotechnol. 14: 624-628.

Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu C-Y, Atkins CA, Cornish E (1997). Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefacicens-mediated gene transfer to shoot apices. Molecular Breeding 3:341-349.

Potrykus I (1990). Gene transfer to cereals: an assessment. Bio/Technology 8:535-542.

Prasad TK, Anderson MD, Martin BA, Stewart CR (1994). Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role of H2O2. Plant Cell 6:65-74.

Pu X-A, Goodman RN (1992) Induction of necrosis by Agrobacterium tumefaciens on grape explants. Physiol. Mol. Plant Pathol. 41: 245-254.

Puonti-Kaerlas J, Eriksson T, Engstrom P (1990). Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor. Appl. Genet. 80:246-252.

Ragan CI, Bloxham DP (1977). Specific labelling of a constituent polypeptide of bovine heart mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone reductase by the inhibitor diphenyleneiodonium. Biochem. J. 163:605-615.

Ranch J, Oglesby L, Zielinski A (1985). Plant regeneration from embryo-derived tissue cultures of soybean. In Vitro Cell Dev. Biol. 21:653-658.

del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53:1255-1272.

Sagi M, Fluhr R (2001). Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and Tobacco Mosaic Virus infection. Plant Physiol. 126:1281-1290.

Sang Y, Cui D, Wang X (2001). Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 126:1449-1458.

Santar�聱 ER, Trick HN, Essig JS, Finer JJ (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep. 17:752-759.

Santar�聱 ER, Finer JJ (1999). Transformation of soybean( Glycine max (L.) Merrill) using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev. Biol-Plant 35:451-455.

Schopfer P, Plachy C, Frahry G (2001). Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 125:1591-1602.

Segal AW, Abo A (1993). The biochemical basis of the NADPH oxidase of phagocytes. Trends in Biochemical Sciences 18:43-47.

Shibata D, Liu YG (2000). Agrobacterium-mediated plant transformation with large DNA fragments. Trends in Plant Sci. 5:354-357.

Smirnoff N (2002). Antioxidants and reactive oxygen species in plants Special issue. J. of Experimental Botany 53.


Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol. 131: 892-899.

Somssich IE, Hahlbrock K (1998). Pathogen defense in plants – a paradigm of biological complexity. Trends in Plant Science 3, 86-90.

Storz G., Imlay JA (1999). Oxidative stress. Current Opinion in Microbiology 2:188-194.

Torres MA, Dangl JL (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8:397-403.

Torres MA, Dangl JL, Jones JDG (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99:517-522.

Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG: Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91-phox). The Plant Journal 1998:14:365-373.

Varnova E, Inze D, Van Breusegem F (2002). Signal transduction during oxidative stress. J. Exp. Bot. 53:1227-1236.

Varnova E, Langebartels C, Van Montague M, Inze D, Van Camp W (2000). Oxidative stress, heat shock and drought differentially affect expression of a tobacco protein phosphatase 2C. J. Exp. Bot. 51:1763-1775.

Walden RJS (1991). Tissue culture and the use of transgenic plants to study plant development. In Vitro Cell Dev. Biol. 27:1-10.

Walters DR (2003). Polyamines and plant disease. Phytochemistry 64:97-107.

Warkentin T, McHughen A (1991). Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep. 10:489-493.

Winston, GW (1990). Free radicals in cells. In Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Willy-Liss Inc, pp. 57-86.

Wojtaszek P (1997). Oxidative burst: an early plant response to pathogen infection. The Biochemical Journal 322:681-692.

Wright M, Koehler S, Hinchee M, Carnes M (1986). Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5:150-154.

Wright M, Ward D, Hinchee M, Carnes M, Kaufman R (1987). Regeneration of soybean (Glycime max. L. Merr.) from cultured primary leaf tissue. Plant Cell Rep. 6:83-89.

Yamada T, Teraishi M, Hattori K, Ishimoto M (2001). Transformation of azuki bean by Agrobcaterium tumefaciens. Plant Cell, Tissue and Organ Culture 64:47-54.


Yoshioka H, Sugie K, Park H-J, Maeda H, Tsuda N, Kawakita K, Doke N (2001). Induction of plant gp91phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Molecular Plant and Microbe Interactions 14:725-736.

Zambryski P (1988). Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 22:1-30.

Zhang Z, Xing A, Staswick P, Clemente TE (1999). The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult. 56:37-46.

Zheng Q, Ju B, Liang L, Xiao X (2005). Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult. 81:83-90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top