跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/11/15 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何自琳
研究生(外文):Tzu-Lin, Ho
論文名稱:基於多屬性選取方法的混合型粗糙集分類器辨識公司財務受挫
論文名稱(外文):A Hybrid Rough Set Classifier based on Multi-Attributes Selection Method for Identifying Financial Distress of Company
指導教授:鄭景俗鄭景俗引用關係
指導教授(外文):Ching-Hsue, Cheng
口試委員:莊煥銘蔡明智
口試委員(外文):Huan-Ming, ChuangMing-Chi, Tsai
口試日期:2014-02-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:47
中文關鍵詞:財務受挫財務比率多屬性選取粗糙集理論
外文關鍵詞:Financial distressFinancial ratiosMulti-Attributes selectionRough set theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在過去幾十年裡,財務受挫的預測是一項重要且具挑戰性的議題,許多的研究使用傳統的方式和人工智慧的技術建構模型來處理破產預測和財務危機的問題。財務受挫的資訊將影響投資者的決定,且人們會依賴分析師的意見和他們主觀的判斷,這可能會導致他們做出錯誤的決策。因此,本研究的目的為建構一個新穎且客觀的模型,並提供判斷公司財務狀況的規則給決策者做為參考。本研究使用六種屬性選取方法: (1)卡方檢定,(2)訊息增益,(3)判別分析,(4)羅輯迴歸,(5)支援向量機,及(6)本研究所提出的聯合屬性方法來減少高維度的資料。此外,本研究利用粗糙集分類器來分類財務受挫,為了驗證所提出的模型,本研究使用台灣經濟新報(TEJ)資料庫做為實驗資料,並且和決策樹、多層感知器及支持向量機比較分類正確率及型一、型二誤差。實驗結果顯示,羅輯迴歸與卡方屬性選取方法結合粗糙集分類器模型在型一、型二誤差及正確率優於其他所列出的方法。
After several decades, the prediction of financial distress is an important and challenging issue. Many researchers have constructed models to deal with bankruptcy prediction and financial crisis, including conventional approaches and artificial intelligence (AI) techniques. Financial distress information will influence the investors’ decision, and the investors depend on the analyst’s opinions and their subjective judgments, it will cause investors/decision-makers to make the wrong decision. Therefore, the objectives of this study is to construct a novel model, which can provide the rules of financial situation of company to decision-makers as references. This study employed six attribute selection methods to reduce high dimension data, which contain: (1) Chi square, (2) Information gain, (3) Discriminant analysis, (4) Logistic regression, (5) Support vector machine, and (6) the proposed Join method, then this study utilized rough set classifier to classify financial distress. For verifying proposed model, the TEJ dataset is employed as experimental data, and compare with Decision tree, Multilayer perceptron, Support vector machine in Type I and Type II error and accuracy. The experimental result shows that Logistic regression and Chi square attribute selection method combined rough set classifier outperforms the listing models in Type I and Type II error and accuracy.
摘要 i
Abstract ii
誌謝 iii
Content iv
List of Tables v
List of Figures vi
1. Introduction 1
1.1 Research background 1
1.2 Research motivations 1
1.3 Research objectives 2
1.4 Organization of the thesis 3
2. Literature review 5
2.1 Financial distress 5
2.1.1 Performance indicator 6
2.1.2 Financial ratio 6
2.2 Attribute selection 7
2.3 Rough set theory 8
2.3.1 The LEM2 rule extraction methods 10
2.4 Related data mining techniques 11
2.4.1 Decision tree C4.5 11
2.4.2 Multilayer perceptron 12
2.4.3 Support vector machine 13
3. Proposed model 14
3.1 Research concept 14
3.2 Proposed algorithm 16
4. Experiment and comparison 20
4.1 The collected dataset 20
4.2 Financial distress experiment 22
4.3 Moving windows experiment 26
4.4 Findings 30
5. Conclusion 33
Reference 35

Bazan, J., Nguyen, H.S., Synak, P., & Wroblewski, J. (2000). Rough set algorithms in classification problem. In L. Polkowski, S.T., & Lin, T.Y. (Eds.), Rough set methods and applications, 49-88, Heidelberg: Physica-Verlag.
Beaver, W. H. (1966). Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4, 71-102.
Bishop, C.M. (2006). In the terminology of statistics, this model is known as logistic regression, although it should be emphasized that this is a model for classification rather than regression. Pattern Recognition and Machine Learning, Springer, 205.
Burges, C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2), 955-974.
Chaudhuria, A., & De, K. (2011). Fuzzy Support Vector Machine for bankruptcy prediction. Applied Soft Computing, 11(2), 2472-2486.
Chen, M.Y. (2011a). Bankruptcy prediction in firms with statistical and intelligent techniques and a comparison of evolutionary computation approaches. Computers and Mathematics with Applications, 62, 4514-4524.
Chen, M.Y. (2011b). Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert Systems with Applications, 38, 11261-11272.
Cox, D.R., & Snell, E.J. (1989). Analysis of Binary Data (second edition). Taylor & Francis.
Deakin, E. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179.
Fisher, R.A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7(2), 179-188.
Fitz-Gibbon, C.T. (1990). Performance indicators. BERA Dialogues (2).
Foster, G. (1986). Financial Statement Analysis. Pearson Education.
Gestel, T.V., Baesens, B., Suykens, J.A.K., Poel, D.V.D., Baestaens, D.E., & Willekens, M. (2006). Bayesian kernel based classification for financial distress detection, European Journal of Operational Research, 172, 979-1003.
Groppelli, A.A. & Nikbakht, E. (2000). Finance (pp.433). Barron's Educational Series.
Grzymala-Busse, J.W. (1992). LERS—a system for learning from examples based on rough sets. Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, 3-18.
Grzymala-Busse, J.W. (1997). A new version of the rule induction system LERS. Fundamenta Informaticae, 31(1), 27-39.
Guyon, I., & Elisseeff A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422
Hall, M.A., & Holmes, G. (2003). Benchmarking feature selection techniques for discrete class data mining. IEEE Transactions on Data Engineering, 15(3), 1-16.
Han, J. & Kamber, M. (2000). Data mining: Concepts and techniques. New York: Morgan-Kaufmann.
Hruschka, E.R., & Ebecken, N.F.F. (2006). Extracting rules from multilayer perceptrons in classification problems: A clustering-based approach. Neurocomputing, 70, 384-397.
Indro, D.C., Jiang, C.X., Patuwo, B.E., & Zhang, G.P. (1999). Predicting mutual fund performance using artificial neural networks. The International Journal of Management Science, 27, 373-380.
Jardin, P.D. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy. Neurocomputing, 73, 2047-2060.
Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. In Proceedings of the European Conference on Machine Learning, 171-182.
Lee, K., Booth, D., & Alam, P. (2005). A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications, 29, 1-16.
Lee, S., & Choi, W.S. (2013). A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis. Expert Systems with Applications, 40, 2941-2946.
Lin, F.Y., Liang, D.R., & Chen, E.C. (2011). Financial ratio selection for business crisis prediction. Expert Systems with Applications, 38, 15094-15102.
Liu, C.J. (2014). Discriminant analysis and similarity measure. Pattern Recognition, 47(1), 359-367.
Mak, B., & Munakata, T. (2002). Rule extraction from expert heuristics: a comparative study of rough sets with neural networks and ID3. European Journal of Operational Research, 136, 212-229.
Ozturk, A., & Arslan, A. (2007). Classification of transcranial Doppler signals using their chaotic invariant measures. Computer Methods and Programs in Biomedicine, 86(2), 171-180.
Pawlak, Z. (1982). Rough Sets. International Journal of Computer and Information Sciences, 11, 341-356.
Pawlak, Z. (1991). Rough sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers.
Polat, K., & Güneş, S. (2009). A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems. Expert Systems with Applications, 36(2), 1587-1592.
Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Quinlan, J.R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan-Kaufmann.
Ross, S.A., Westerfield, R.W., & Jordan, B.D. (2003). Fundamentals of corporate finance (6th ed.). New York: The McGraw-Hill Companies
Shia, B.C., & Chiu,C.C. (2000). Neural Network Analysis. Taiwan: Hsiao Yuan Publication Co., Ltd.
Siskos, Y., Zopounidis, C., Pouliezos, A. (1994). An integrated DSS for financing firms by an industrial development bank in Greece. Decision Support Systems, 12, 151-168.
Souza, F.A.A., Araújo, R., Matias, T., & Mendes, J. (2013). A multilayer-perceptron based method for variable selection in soft sensor design. Journal of Process Control, 23, 1371-1378
Sun, J., Li, H., Huang, Q.H., & He, K.Y. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches, Knowledge-Based Systems, 57, 41-56.
Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Vellido, A., Lisboa, P.J.G., & Vaughan, J. (2005). Neural networks in business: a survey of applications (1992-1998). Expert Systems with Applications, 17, 51-70 (1999).
Wu, S. (2005). Performance Management Practices Manual. Beijing: China machine press
Yeh, C.C., Chi, D.J., & Hsu, M.F. (2010). A hybrid approach of DEA, rough set and support vector machines for business failure prediction. Expert Systems with Applications, 37, 1535-1541.
Zopounidis, C., Doumpos, M., Matsatsinis, N.F. (1996b). Application of the FINEVA multicriteria knowledge-based decision support systems to the assessment of corporate failure risk. Foundations of Computing and Decision Sciences, 21(4), 233-251.
Zopounidis, C., Matsatsinis, N.F., Doumpos, M. (1996a). Developing a multicriteria knowledge-based decision support system for the assessment of corporate performance and viability: The FINEVA system. Fuzzy Economic Review, 1(2), 35-53.
Zopounidis, C., Pouliezos, A., Yannacopoulos, D. (1992). Designing a DSS for the assessment of company performance and viability. Computer Science in Economics and Management, 5, 41-56.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top