|
1. Adlakha V. G., H. Arsham, Simplifying teaching the transportation problem, International Journal of Mathematical Education in Science and Technology, 29 (1998) 271-285. 2. Adlakha V. G., H. Arsham, Distribution-routes stability analysis of the transportation problem, Journal of Optimization, 43 (1998) 47-72. 3. Arsham H., A. B. Kahn, Simplex-type algorithm for general transportation problems: An alternative to stepping stone, Journal of Operational Research Society, 40 (1989) 581-590. 4. Arsham H., Postoptimality analysis of the transportation problem, European Journal of Operational Research Society, 43 (1992) 121-139. 5. Badra N. M., Seneitivity analysis of transportation problems, Journal of Applied Science Research, 3 (2007) 668-675. 6. Balinski M. L., R. E. Gomory, A primal method for the assignment and transportation problems, Management Science, 10 (1964) 578-593. 7. Bazaraa M. S., J. J. Jarvis, H. D. Sherali, Linear Programming and Network Flows, 3th ed., 2010, Wiley-Interscience, New York. 8. Dijkstra E. W., A note in two problems in connection with graphs, Numerische Mathematik, 1 (1959) 269-271. 9. Doustdargholi S., A. Derakhshan Asl, V. Abasgholipour, Sensitivity analysis of righthand-side parameter in Transportation Problem, Applied Mathematical Sciences, 3 (2009) 1501-1511. 10. Gal T., Shadow prices and sensitivity analysis in linear programming under degeneracy— A state-of-the art survey, OR Spektrum, 8 (1986) 59-71. 11. Hadigheh A. G., T. Terlaky, Sensitivity analysis in linear optimization: Invariant support set intervals, European Journal of Operational Research Society, 169 (2006) 1158-1175. 12. Hillier F. S., G. J. Lieberman, Introduction to Operations Research, 8th ed., 2005, McGraw-Hill, New York. 13. Koltai T., T. Terlaky, The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming, International Journal of Production Economics, 65 (2000) 257-274. 14. Leclerc G., Post-optimal analysis of a degenerate optimal solution to the Hitchcock formulation, Civil Engineering and Environment Systems, 6 (2009) 92-101. 15. Lin C. J., U. P. Wen, Sensitivity analysis of objective function coefficients of the assignment problem, Asia-Pacific Journal of Operation Research, 24 (2007) 203-221. 16. Lin C. J., U. P. Wen, Sensitivity analysis of the optimal assignment problem, European Journal of Operational Research, 149 (2003) 35-46. 17. Lin C. J., U. P. Wen, The labeling algorithm for the fuzzy assignment problem, Fuzzy Set and Systems, 142 (2004) 373-391. 18. Namkoong S., J. H. Rho, J. U. Choi, Development of the tree-based link labeling algorithm for optimal path-finding in urban transportation networks, Mathematical and Computer Modeling, 27 (1998) 51-65. 19. Satty T., S. Gass, Parametric objective function part 1, Journal of the Operational Research Society of America, 2 (1954) 316-319. 20. Sharma R. R. K., K. D. Sharma, A new dual based procedure for the transportation for the transportation problem, European Journal of Operational Research, 122 (2000) 611-624. 21. Wendell R. E., Sensitivity analysis revisited and extended, Decision Sciences, 23 (1992) 1127-1142. 22. Wendell R. E., The tolerance approach to sensitivity analysis in linear programming, Management Science, 31 (1985) 564-578. 23. Ravi N., Wendell R. E., The tolerance approach to sensitivity analysis of matrix coefficients in linear programming: General perturbation, European Journal of Operational Research Society, 36 (1988) 943-950.
|