跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 06:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉昀
研究生(外文):Yun Yeh
論文名稱:以磁控共濺鍍法製作氧化物半導體作為透明薄膜電晶體之製程與特性分析
論文名稱(外文):Fabrication and Characteristics Analysis of Transparent Thin-Film Transistors with Oxide Semiconductors Prepared by using Magnetron Co-sputtering Method
指導教授:李憶興李憶興引用關係
指導教授(外文):Yih-Shing Lee
口試委員:林鴻志陳啟文
口試委員(外文):Hung-Chih LinChi-Wen Chen
口試日期:2013-07-04
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:共濺鍍薄膜氧化銦鋁鋅氧化銦鎵鋅氧化物薄膜電晶體
外文關鍵詞:IAZO (In2O3:Al2O3:ZnO) filmsIGZO (In2O3:Ga2O3:ZnO) filmsOptical and electrical propertiesCo-sputteriing thin-film transistors (TFTs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用磁控共濺鍍系統以兩支陶瓷靶 (氧化銦、氧化鎵或氧化鋁)以及一支金屬鋅靶材,於室溫沈積氧化銦鋁鋅(co-IAZO)或氧化銦鎵鋅(co-IGZO)半導體薄膜於玻璃基板,並研究不同製程參數對薄膜電性、光學特性與材料特性之影響;並於矽晶圓上使用反交錯型(Inverted Staggered)電晶體結構製備氧化物薄膜電晶體,並驗證不同共濺鍍薄膜製程參數對於元件特性之影響。
藉由改變退火溫度、O2流量、In2O3、Al2O3、Zn沈積功率之製程參數對於co-IAZO薄膜進行分析。由成份與結晶相分析結果顯示,主要影響因素為Al原子成份,較高的Al 原子比例較易形成InAlZn7O10結晶相導致薄膜平均穿透率、光學能隙、電阻率上升,載子遷移率與載子濃度下降;相反地,較低的Al原子比例較易形成In2O3(ZnO)17結晶相導致薄膜平均穿透率、光學能隙、電阻率下降,載子遷移率與載子濃度上升。藉由改變In2O3、Ga2O3、Zn沈積功率之製程參數對於co-IGZO薄膜進行分析。由成份與結晶相分析結果顯示,主要影響因素為Ga與Zn原子成份,較高的Ga 原子比例會導致薄膜光學能隙與電阻率上升,但載子濃度與載子遷移率下降,反之亦然;較高的Zn 原子比例較易形成InGaZn7O10結晶相導致薄膜平均穿透率下降與載子遷移率上升;相反地,較低Zn原子比例較易形成InGaZn2O5結晶相導致薄膜平均穿透率上升與載子遷移率下降。
藉由不同氧氣流量與通道退火溫度之co-IAZO元件驗證,以氧氣流量為10 sccm與退火溫度為300 ℃進行不同沈積功率對於co-IAZO與co-IGZO薄膜電晶體元件特性之影響。最適化之co-IAZO薄膜電晶體製程條件為In2O3=75 W、Al2O3 =150 W、Zn=75 W,其電晶體特性為:Ion/Ioff=106、Ion=2.15´10-5 A、Vth=-1.2 V,但SS(0.81 V/decade)值過大、μFE(0.11 cm2/V-s)值不夠大。最適化之co-IGZO薄膜電晶體製程條件為In2O3=100 W、Ga2O3 =150 W、Zn=75 W,其電晶體特性為:Ion/Ioff=109、Ion=1.36×10-5 A、Vth=6 V、SS=0.31 V/decade,但μFE(0.48 cm2/V-s)值不夠大。

This study investigates effects of varying the processing parameters on the electrical and optical properties of IAZO (In2O3:Al2O3:ZnO) or IGZO (In2O3:Ga2O3:ZnO) films deposited on glass substrates. Semiconductor films were prepared by sputtering three targets simultaneously at room temperature using two radio-frequency (RF) (In2O3 and Al2O3 or Ga2O3) and one direct-current (DC) (Zn) magnetron co-sputtering system. Oxide thin film transistors (TFTs) were frabicated by using inverted staggered structure on a silicon wafer to investigate effects of various processing parameters of co-sputtering films on characteristics of devices.
The results of compositional and crystalline phase analyses of co-IAZO films showed the main factor is Al atomic percent (at%) of films. Films with higher Al atom% easier to form InAlZn7O10 crystalline phase caused an increased average transmittance, optical band gap, resistivity, while the carrier mobility and concentration decreased. On contrary, films with a lower Al at% easier to form In2O3(ZnO)17 crystalline lead an increased average transmittance and resistivity. The results of compositional and crystalline phase analyses of co-IGZO films showed the main factors are the Ga and Zn at% of films, films with higher Ga at% caused an increased optical energy gap, and resistivity, while the carrier concentration and carrier mobility and decreased, and vice versa. Co-IGZO films with a higher Zn at% easier to form InGaZn7O10 crystalline caused a decreased average transmittance, while the carrier mobility increased. On contrary, the films with a lower Zn at% easier to form InGaZn2O5 crystalline lead an increased average transmittance, while carrier mobility decreased.
To investigate the effects of varying the deposition power on device characterics of co-IAZO and co-IGZO TFTs by using a O2 flow at 10 sccm and post-channel annealing temperature at 300℃, respectively. The optimal device characteristics of co-IAZO TFTs with In2O3=75 W, Al2O3=150 W, and Zn=75 W are Ion/Ioff=106, Ion=2.1510-5 A, Vth=-1.2 V, but SS (0.81 V/decade) value is too big, μFE (0.11 cm2/V-s) value is too small. The optimal device characteristics of co-IGZO TFTs with In2O3=100 W, Ga2O3=150 W, and Zn=75 W are the Ion/Ioff=109, Ion=1.36×10-5 A, Vth=6 V, SS=0.31 V/decade, but μsat (0.48 cm2/V-s) value is too small.

摘 要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 a-IGZO TFT的文獻回顧 5
1.3 研究動機與目標 9
1.4 論文架構 9
第二章 元件製造和量測裝置 10
2.1 靶材的製造過程 10
2.2 基板清潔步驟 10
2.3 薄膜沈積和退火步驟 10
2.4 元件製作流程 11
2.5 量測裝置 12
第三章 實驗結果與討論 16
3.1共濺鍍薄膜特性 16
3.1.1改變退火溫度對於co-IAZO薄膜之特性影響 16
3.1.2改變通氧量(O2)對於co-IAZO薄膜之特性影響 19
3.1.3改變In2O3沈積功率對於co-IAZO薄膜之特性影響 22
3.1.4改變Al2O3沈積功率對於co-IAZO薄膜之特性影響 25
3.1.5改變Zn沈積功率對於co-IAZO薄膜之特性影響 28
3.1.6改變In2O3沈積功率對於co-IGZO薄膜之特性影響 31
3.1.7改變Ga2O3沈積功率對於co-IGZO薄膜之特性影響 34
3.1.8改變Zn沈積功率對於co-IGZO薄膜之特性影響 37
3.2共濺鍍薄膜電晶體元件特性分析 40
3.2.1退火溫度對co-IAZO薄膜電晶體元件之影響 40
3.2.2改變氧氣(O2)流量對co-IAZO薄膜電晶體元件之影響 41
3.2.3改變In2O3沈積功率對co-IAZO薄膜電晶體元件之影響 42
3.2.4改變Al2O3沈積功率對co-IAZO薄膜電晶體元件之影響 43
3.2.5改變Zn沈積功率對co-IAZO薄膜電晶體元件之影響 45
3.2.6改變Ga2O3沈積功率對co-IGZO薄膜電晶體元件之影響 46
3.2.7改變Zn沈積功率對co-IGZO薄膜電晶體之特性影響 48
第四章 結論與未來展望 51
4.1結論 51
4.2未來展望 52
參考文獻 53

[1]H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,” J. Non-Cryst. Solids, vol. 165, pp. 198–200, 1996.
[2]H. Hosono, M. Yasukawa, and H. Kawazoe, “Novel oxide amorphous semiconductors: transparent conducting amorphous oxides,” J. Non-Cryst. Solids, vol. 203, pp. 334, 1996.
[3]J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., vol. 95, pp. 013503-1-3, 2009.
[4]R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin film transistors,” Appl. Phys. Lett., vol. 82, pp. 733-735, 2003.
[5]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, 2004.
[6]A. J. Leenheer, J. D. Perkins, M. F. A. M. Vanhest, J. J. Berry, R. P. O’Hayre, and D. S. Ginley, “General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films,” Physical Review B, vol. 77, pp. 115215-1-5, 2008.
[7]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, pp. 112123-1-3, 2006.
[8]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 4303-4308, 2006.
[9]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. MorKoc, “A comprehensive review of ZnO material and devices,” J. Appl. Phys., vol. 98, pp. 041301-1-103, 2005.
[10]S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, pp. 1624-1630, 2003.
[11]E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, R. Martins, and L. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys. Lett., vol. 85, pp. 2541-2543, 2004.
[12]J. Nishii, F. M. Hossain, S. Takgi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, and M. Kawasaki, “High mobility thin film transistors with transparent ZnO channels,” Jpn. J. Appl. Phys., vol. 42, pp. L 347–L 349, 2003.
[13]I. H. Kim, D. Y. Ku, J. H. Ko, D. Kim, K. S. Lee, J.-h. Jeong, T. S. Lee, B. Cheong, Y.-J. Baik, and W. M. Kim, “Improvement of the thermal and chemical stability of Al doped ZnO films,” J. Electroceram, vol. 17, pp. 241–245, 2006.
[14]D. H. Kim, H. R. Kim, S. H. Lee, E. Byon, and G. H. Lee, “Electrical and structural properties of multi-component transparent conducting oxide films prepared by co-sputtering of AZO and ITO,” J. Non-Cryst. Solids, vol. 356, pp. 1779–1783, 2010.
[15]P. Banerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, “Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films,” J. Appl. Phys., vol. 108, pp. 043504-1-7, 2010.
[16]D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, “Amorphous IZO-based transparent thin film transistors,” Thin Solid Films, vol. 516, pp. 5894–5898, 2008.
[17]T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Combinatorial approach to thin-film transistors using multi-component semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system,” Appl. Phys. Lett., vol. 90, pp. 242114-1-3, 2007.
[18]P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, “Toward high-performance amorphous GIZO TFTs,” Journal of the Electrochemical Society, vol. 156, pp. H161-H168, 2009.
[19]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, -InGaZnO4,” Thin Solid Films, vol. 486, pp. 38–41, 2005.
[20]A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD,” Thin Solid Films, vol. 516, pp. 1326–1329, 2008.
[21]H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, “Factors controlling electron transport properties in transparent amorphous oxide semiconductors,” J. Non-Cryst. Solids, vol. 354, pp. 2796–2800, 2008.
[22]T. Aoi, N. Oka, Y. Sato, R. Hayashi, H. Kumomi, and Y. Shigesato, “DC sputter deposition of amorphous indium–gallium–zinc–oxide (-IGZO) films with H2O introduction,” Thin Solid Films, vol. 518, pp. 3004–3007, 2010.
[23]Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices,” Jpn. J. Appl. Phys., vol. 48, pp. 031301-1-4, 2009.
[24]C.T. Lee et al. “International Conference on Optics and Photonics in Taiwan, ” OPT5-O-05, (2010).
[25]A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett., vol. 94, pp. 133502–1-3, 2009.
[26]B. D. Ahn, H. S. Shin, H. J. Kim, J. S. Park, and J. K. Jeong, “Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 93, pp. 203506-1-3, 2008.
[27]Y. K. Moon, S. Lee, W. S. Kim, B. W. Kang, C. O. Jeong, D. H. Lee, and J. W. Park. “Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator” Appl. Phys. Lett, vol. 95, pp. 013507-1-3, 2009.
[28]K. S. Son, T. S. Kim, J. S. Jung, M. K. Ryu, K. B. Park, B. W. Yoo, K. C. Park, J. Y. Kwon, S. Y. Lee, and J. M. Kim. “Threshold voltage control of amorphous gallium indium zinc oxide TFTs by suppressing back-channel current” Electrochemical and Solid-State Letters, vol. 12, pp. H26-H28, 2009.
[29]H. S. Bae, J. H. Kwon, S. Chang, M. H. Chung, T. Y. Oh, J. H. Park, S. Y. Lee, J. J. Pak, and B. K. Ju, “The effect of annealing on amorphous indium gallium zinc oxide thin film transistors,” Thin Solid Films, vol. 518, pp. 6325–6329, 2010.
[30]P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, “The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs,” Electrochemical and Solid-State Letters, vol. 11, pp. H248-H251, 2008.
[31]M. Nakata, K. Takechi, S. Yamaguchi, E. Tokumitsu, H. Yamaguchi, and S. Kaneko. “Effects of excimer laser annealing on InGaZnO4 thin-film transistors having different active-layer thicknesses compared with those on polycrystalline silicon,” Jpn. J. Appl. Phys., vol. 48, pp. 115505-1-6, 2009.
[32]Y. H. Yang, S. Yang, and K. S. Chou, “Characteristic enhancement of solution-processed In–Ga–Zn oxide thin-film transistors by laser annealing,” IEEE Electron Device Lett., vol. 31, pp. 969-971, 2010.
[33]T. Kamiya, K. Nomura, and H. Hosono, “Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: percolation conduction examined by analytical model,” Journal of display technology, vol. 5, pp. 462-467, 2009.
[34]K. Nomura, H. Ohta, N. Ueda, T. Kamiya, M. Hirano, and H. Hosono, "Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films," Appl. Phys. Lett., vol. 85, pp. 993-995, 2004.
[35]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "Carrier transport and electronic structure in amorphous oxide semiconductor, -InGaZnO4," Thin Solid Films, vol. 486, pp. 38-41, 2005.
[36]T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping,” Journal of display technology, vol. 5, pp. 468-483, 2009.
[37]T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, pp. 044305, 2010.
[38]H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851–858, 2006.
[39]M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, “Trap densities in amorphous-InGaZnO4 thin-film transistors,” Appl. Phys. Lett., vol. 92, pp. 133512-1-3, 2008.
[40]K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, Y. G. Mo, J. H. Jeong, J. Y. Kwon, M. K. Ryu, S. Y. Lee, R. Choi, and J. K. Jeonga, “The effect of density-of-state on the temperature and gate bias-induced instability of InGaZnO thin film transistors,” Journal of The Electrochemical Society, vol. 157, pp. H983-H986, 2010.
[41]H. H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C. C. Wu, “Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states,” Appl. Phys. Lett., vol. 92, pp. 133503-1-3, 2008.
[42]J. H. Park, K. Jeon, S. Lee, S. Kim, S. Kim, I. Song, C. J. Kim, J. Park, Y. Park, D. M. Kim, and D. H. Kim, “Extraction of density of states in amorphous GaInZnO thin-film transistors by combining an optical charge pumping and capacitance–voltage characteristics,” IEEE Electron Device Lett., vol. 29, pp. 1292-1295, 2008.
[43]T. Iwasaki, et al., Applied Physcic Letters., vol. 90, pp. 242114, 2007.
[44]C.T. Lee, et al., 2010 International Conference on Optics and Photonics in Taiwan, OPT5-O-05.
[45]Jae Kyeong, et al., Applied Physcic Letters., vol. 91, 113505,2007.
[46]M. Grätzel, “Heterogeneous photochemical electron transfer”, CRC Press: Boca Raton, 1989.
[47]Chares Kittel, “Introduction to solid state physics”, John Wiley & Sons. Inc,1996.
[48]A. Hagfeldt, M. Grätzel, “Light-induced redox reactions in nanocrystalline systems”, Chemical Reviews, Vol. 95 ,1995, pp. 49-68.
[49]J. Kanicki, “Amorphous & Microcrystalline Semiconductor Devices, Volume II: Materials and Device Physics”, Boston: Artech House, 1992.
[50]W. Miao, X. Li, Q. Zhang,” Transparent conductive In2O3:Mo thin films prepared by reactive direct current magnetron sputtering at room temperature” Thin Solid Films, Vol. 500, 2006, pp. 70.
[51]B.D. Cullity, ”Elements of X-ray diffraction, second edition” AddisonWesley, Reading, MA, 1978, pp.102.
[52]A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 94 (2009) 133502–1-133502-3.
[53]S. Martin, C. S. Chiang, J. Y. Nahm, T. Li, J. Kanicki, Y. Ugai, Jpn. J. Appl. Phys. 40(2A) (2001) 530-537.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top