跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 07:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂東銘
研究生(外文):Dong-Ming Lyu
論文名稱:直接合成含長碳鏈中孔洞分子篩SBA-15及其在管柱層析之應用
論文名稱(外文):Direct Synthesis of Mesoporous SBA-15 with Long Alkyl Chains and its Application on Chromatographic Columns
指導教授:鄭吉豐
指導教授(外文):Cheng Chi-Feng
學位類別:碩士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:161
中文關鍵詞:管柱層析中孔洞分子篩SBA-15直接合成
外文關鍵詞:Chromatographic ColumnsDirect SynthesisMesoporous SBA-15
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究,以不同修飾方法將烷基碳鏈修飾在中孔徑分子篩SBA-15孔洞表面上,並將已修飾過的中孔徑分子篩作為靜相填充材料,探討其於HPLC分離多苯環混合物上的應用。
以後修飾法(post-synthesis)藉由微波能(Microwave energy)直接在未鍛燒中孔徑分子篩SBA-15孔洞表面修飾上含鹵素烷基碳鏈,與斷燒過後中孔徑分子篩SBA-15孔洞表面修飾上含鹵素烷基碳鏈作比較,因未鍛燒 SBA-15孔洞表面含大量Si-OH基,使我們能修飾上的鹵素烷基碳鏈數較多,應用在HPLC上我們可發現理論板數有明顯的差距。
本研究另以共縮合的方法,在一鍋反應中,成功直接鍵結不同含量、不同長碳鏈矽烷於中孔洞分子篩,由於較高比率矽烷可嫁接於中孔洞分子篩,其產物作為靜相填充材料,應用在管柱層析,可發現其分離效果和傳統後修飾法產物分離效果比較,不管在理論板數與拖尾係數都有明顯的提升。
As-synthesized and calcined SBA-15 mesoporous sieves were surface-modified with long alkylsilanes by microwave thermal heating. Optimal temperatures and time of microwave heating were studied systematically. The mesoporous SBA-15 silicas are functionalized effectively using alkylsilanes with different carbon length. SBA-15 materials surface-modified with long alkylsilanes were used as HPLC stationary phase and show better separation effect than traditional calcined SBA-15 materials surface-modified with silanes.
Silane-functionalized mesoporous silicas have been synthesized by co-condensation of variable alkylsilanes and tetraethoxysilane (TEOS) in acidic medium with the block copolymer Pluronic 123 as the structure directing agent. The influence of synthesis parameters, the molar ratio of X = silane /( silane + TEOS) was studied. SBA-15 materials surface-modified by co-condensation with long alkylsilanes were used as HPLC stationary phase show better separation effect than traditional calcined SBA-15 materials surface-modified with silanes.
目錄
摘要 I
Abstract II
謝誌 III
目錄 IV
List of Figure VII
List of Table XVI
第一章 緒 論 1
1.1 前言 1
1.2 界面活性劑性質介紹 2
1.2.1 分子結構簡述 2
1.2.2 界面活性劑的分類 4
1.2.3非離子界面活性劑介紹 5
1.3中孔徑分子篩SBA-15之介紹 7
1.3.1 中孔徑分子篩SBA-15簡介 7
1.3.2 SBA-15性質與應用 7
1.4 微波的介紹 8
1.4.1 微波反應之裝置與原理 8
1.5 層析介紹 12
1.6 填充材料之應用 16
1.7孔洞氧化矽材料之修飾 36
1.8研究目的 38
第二章 實驗部份 40
2.1實驗藥品: 40
2.2實驗部份: 42
2.2.1 SBA-15的合成 42
2.2.2 SBA-15的表面修飾 42
2.2.3由共縮合方法合成含長碳鏈的SBA-15 43
2.3 鑑定儀器 47
2.3.1 X射線粉末繞射儀(Powder X-ray Diffraction;PXRD.................................................47
2.3.2氮氣等溫吸附/脫附儀(N2 adsorption/desorption isotherm,BET) 47
2.3.3元素分析(Elemental Analysis,EA) 47
2.3.4魔角旋轉固態核磁共振光譜儀(Magic Angle Spinning-Solid State Nuclear Magnetic Resonance;MAS-Solid State NMR) 48
2.4 表面修飾覆蓋率計算 48
2.5 孔洞結構參數示意 51
第三章 微波表面修飾含界面活性劑SBA-15及在層析管柱之應用.....................................................55
3.1微波修飾不同碳鏈矽烷於未鍛燒分子篩表面並探討其修飾結果... 57
3.2 層析結果與討論 72
3.2.1管柱填充及層析參數 72
3.2.2 微波直接取代之層析結果與討論 76
3.3結論 91
第四章 共縮合法合成含長碳鏈矽烷SBA-15材料及其在層析管柱之應用 93
4.1 藉由共縮合法探討不同比例修飾劑對修飾效果的影響 95
4.2探討不同修飾劑對於分子篩表面修飾結果 105
4.3 層析結果與討論 121
4.3.1 用共縮合的方法合成靜相管柱之層析結果與討論 122
4.4結論 137
參考文獻 138


List of Figures
Figure 1- 1 The diagram of mesoporous molecular sieves ........................ 2
Figure 1- 2 A diagram of a surfactant molecule ........................................ 3
Figure 1- 3 Micelle diagram....................................................................... 3
Figure 1- 4 Different packing curves of micelles. (a) ball-like, (b) rod-like, (c)
lamellar, (d) reverse micelle and (e) cyst........................................... 4
Figure 1- 5 The energy path of a closed reaction microwave.................. 11
Figure 1- 6 A diagram of a closed microwave digestion vessel .............. 11
Figure 1- 7 Model of assymmetry adsorbed peak.................................... 16
Figure 1- 8 GC separation of hydrocarbon mixtures on the MCM-41 film
capillary column. Inset shows separations performed on a HP-1 type
(polydimethylsiloxane) column; conditions: l = 25 m, id = 0.53 mm. * =
impurities.......................................................................................... 17
Figure 1- 9 Chromatogram of four small biomolecules with a C18-SBA-15
capillary column. The inset shows a separation on a commercial C18
column. The four peaks represent Cys, GSH, 6-TP and DA, respectively,
from left to right. Mobile phase: 0.1 M phosphorate buffer (pH = 3)……
.......................................................................................................... 18
Figure 1- 10 Scanning electron micrographs of (a) BI-95, (b) AI-70, (c) DII-95,
(d) BI-70* ( * sample prepared without CTMABr)......................... 20
Figure 1- 11 Pore size distribution of (a) BI-40, (b) AI-70, (c) CI-95 and (d)
DII-95……………………………………………………………....21
Figure 1- 12 Reverse-phase chromatogram from a column packed with DII-95
material. Solute: a mixture comprising (a) phenol, (b) benzene, (c) toluene,
(d) naphthalene, (e) anthracene, (f) benzopyrene. Conditions of elution: 1
mlmin−1 with methanol:water (70%:30%) during 40 min; linear increase
from 1 to 1.5 mlmin−1 in 2 min with methanol:water (90%:10%); 1.5
mlmin−1 with methanol:water (90%:10%) to the end ...................... 22
Figure 1- 13 SEM images of mesoporous SiO2 obtained at: (a) 80°C for 5 h
(SiO2-1); (b) 80°C for 5 h and 120°C for 12 h (SiO2-2); (c) 80°C for 5 h
and 130°C for 12 h (SiO2-3); (d) 130°C for 12 h (SiO2-4). Scale bar: 5μm.
.......................................................................................................... 23
Figure 1- 14(a) N2 adsorption–desorption isotherms and (b) pore size
distribution curves from the adsorption branch of mesoporous silica spheres
.......................................................................................................... 24
Figure 1- 15 Chromatograms of three aromatic molecules (a) and three proteins
(b) with a SiO2-2-C18 column. Inset in (a) shows chromatogram of aromatic
molecules with a SiO2-2 column. Peaks 1–3 in (a) correspond to
naphthalene, biphenyl, and phenanthrene, respectively, whereas the three
peaks in (b) correspond to human serum albumin (HSA), lysozyme (LYS),
and bovine serum albumin (BSA), respectively .............................. 24
Figure 1- 16 SEM images of spherical particles of a) the sph-PMO and b)
Nucleosil 50–10. .............................................................................. 26
Figure 1- 17 Chromatogramsof mixture 1 (benzene (1), naphthalene (2),
biphenyl (3), and phenanthrene (4)) separated with n-hexane at a flow rate
of 1 mLmin-1 on the Nucleosil 50–10 column or at a flow rate of 2 mLmin-1
on the sph-PMO column……………………………………...……26
Figure 1- 18 Scanning electron micrographs of (a) M1 (synthesized in the
presence of both CTAB and ethanol); (b) M2 (synthesized in the presence
of only ethanol); (c) M3 (synthesized in the presence of only CTAB) and (d)
M1 after surfactant extraction. ......................................................... 27
Figure 1- 19 Chromatograms showing the separation of (1) benzene, (2)
naphthalene, (3) biphenyl, (4) phenanthrene and (5) pyrene using (a) M1
and (b) commercial Chromatorex-phenyl stationary phases. Conditions:
50mm×4.6mm columns; mobile phase: ethanol/H2O 60/40 (v/v); flow
rate: 0.8 mL/min at ambient temperature; UV detection at 254 nm.
..............................................................................................………28
Figure 1- 20 SEM images of bifunctionalized mesoporous organosilicas
synthesized with different concentration of sodium hydroxide....... 29
Figure 1- 21 XRD patterns of bifunctionalized mesoporous organosilicas
synthesized with different concentration of sodium hydroxide....... 30
Figure 1- 22 Chromatograms for the resolution of dl-valine on columns packed
with (a) DACH-SiO2 (Mpropyl grafted on Kromasil silica) and (b) EM30-4.
Conditions—column: 100×4.6mm I.D.; mobile phase: methanol/0.1mM
Cu(OAc)2 and 50mM KH2PO4 aqueous solution = 10:90 (v/v); flow
rate:0.8 mL/min; detection: 254 nm UV; temperature: 25 ◦C………31
Figure 1- 23 SEM images of the cross-sectional view of monolithic columns
prepared with 130_L (A), 150_L (B) and 170_L (C) of TEOS in the original
sols,respectively. C8-TEOS was 100_L for every column……………….32
Figure 1- 24 Chromatograms of six PAHs obtained by direct injection (A),
in-tube SPME–_HPLC using octyl-functionalized hybrid silica monolith
(B). Directly inject 2_L of the standard solution at 50 mg/L (A) or spiked
PAHs at 2 mg/L in 1mL 40% (v/v) methanol solution for in-tube
SPME–_HPLC (B). Carrier solution was 40% (v/v) methanol solution.
Peaks: 1, toluene; 2, naphthalene; 3, biphenyl; 4, fluorene; 5, phenanthrene;
6, fluoranthene……………………………………………………..33
Figure 1- 25 SEM images of MSS-CN and MSS-O…………………….34
Figure 1- 26 Chromatograms showing the separation of (a) benzene, (b)
naphthalene,(c) phenanthrene, and (d) pyrene using C8-MSS as stationary
phases with the flow rate of mobile phase being 1.0 and 2.0 mL/min for A
and B, respectively…………………………...…………………….34
Figure 1- 27 A scheme for surface modification of mesoporous materials by
post-syntheses...................................................................................36
Figure 1- 28 A scheme for the synthesis of mesoporous materials with alkyl
chains by the co-condensation method……………………………..37
Figure 2- 1Flow chart for the synthesis of SBA-15 mesoporous materials.
..................................................................................................……44
Figure 2- 2 Flow chart for the surface modification of as-synthesized SBA-15
via microwave thermal synthesis.. ................................................... 45
Figure 2- 3 Flow chart for the synthesis of SBA-15 with long-chain alkyl chains
by the co-condensation method........................................................ 46
Figure 2- 4 SBA-15 的29Si MAS solid-state NMR 光譜圖及Q2、Q3、Q4 之結
構與化學位移。.............................................................................. 50
Figure 2- 5 XRD patterns of calcined SBA-15........................................ 53
Figure 2- 6 Pore size distribution curve for calcined SBA-15................. 54
Figure 3-1 XRD patterns of as-synthesized SBA-15 material modified by
different silanes using microwave thermal technique. (a) as-synthesized SBA-15
extracted by acidic ethanol solution (b) C8 silane, (c) C12 silane, (d) C18 silane.
…….......................................................................................................... 59
Figure 3-2 13C CP MAS solid state NMR spectra of as-synthesized SBA-15.
.......................................................................................................... 60
Figure 3- 3 13C CP MAS solid state NMR spectra of the (a) as-synthesized
SBA-15 and others with different silanes, (b) C8-SBA-15,(c) C12-SBA-15
and (d) C18-SBA-15.......................................................................... 62
Figure 3- 4 29Si-MAS NMR spectra of SBA-15 materials. Peaks of curve fitting
are in dotted line. (a) as-synthesized SBA-15, (b)calcined SBA-15.
..............................................................................................………65
Figure 3- 5 29Si-MAS NMR spectra of as-synthesized SBA-15 material modified
by different silanes using microwave thermal technique. Peaks of curve
fitting are in dotted line. (a) as-synthesized SBA-15, (b) C8 silane, (c) C12
silane and (d) C18 silane. .................................................................. 67
Figure 3- 6 N2 adsorption-desorption isotherms of as-synthesized SBA-15
material modified by different silanes using microwave thermal technique
(a) as-synthesized SBA-15 extracted by acidic ethanol solution,(b) C8
silane,(c) C12 silane,(d) C18 silane. ................................................... 69
Figure 3- 7 Pore size distributions of as-synthesized SBA-15 material modified
by different silanes using microwave thermal technique (a) as-synthesized
SBA-15 (b) as-synthesized SBA-15 extracted by acidic ethanol solution,(c)
C8 silane,(d) C12 silane,(e) C18 silane. .............................................. 70
Figure 3- 8 Model of assymmetry adsorbed peak.................................... 75
Figure 3- 9 Molecular structures and sizes of four aromatic molecules...78
Figure 3- 10 Chromatograms of four aromatic compounds using homemade
column packing with as-synthesized SBA-15 modified with C8 silane using
microwave thermal technique at different mobile phases(volume
ratio-ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50. ............ 79
Figure 3- 11 Chromatograms of four aromatic compounds using homemade
column packed with calcined SBA-15 material modified with C8 silane
using microwave thermal technique at different mobile phases(volume
ratio-ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50. ............ 81
Figure 3- 12 Chromatograms of four aromatic compounds using homemade
column packing with as-synthesized SBA-15 material modified with C12
silane using microwave thermal technique at different mobile
phases(volume ratio-ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50
.......................................................................................................... 83
Figure 3- 13 Chromatograms of four aromatic compounds using homemade
column packed with calcined SBA-15 material modified with C12 silane
using microwave thermal technique at different mobile phases(volume
ratio-ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50. ............ 85
Figure 3- 14 Chromatograms of four aromatic compounds using homemade
column packing with as-synthesized SBA-15 material modified with C18
silane using microwave thermal technique at different mobile
phases(volume ratio-ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50.
.......................................................................................................... 87
Figure 3- 15 Chromatograms of four aromatic compounds using homemade
column packed with calcined SBA-15 material modified with C18 silane
using microwave thermal technique at different mobile phases(volume
ratio-ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50………..89
Figure 4- 1 113C CP MAS solid state NMR spectra of (a) as-prepared and (b)
extracted SBA-15 with alkyl chains, prepared by the co-condensation of
dodecyltrimethoxysilane and TEOS with X of 30%. ...................... 98
Figure 4- 2 XRD patterns of SBA-15 with alkyl chains prepared by the
co-condensation of dodecyltrimethoxysilane and TEOS at different ratios
of silane (X) and following extraction by acidic ethanol solution. (a) 5%, (b)
10%, (c) 20%, (d) 30% and (e) 40%................................................ 99
Figure 4- 3 N2 adsorption-desorption isotherms of SBA-15 with alkyl chains
prepared by the co-condensation of dodecyltrimethoxysilane and TEOS at
different ratios of silane (X) and extraction by acidic ethanol solution.(a)
0%, (b) 5%, (c) 10%, (d) 20%, (e)30%.......................................... 101
Figure 4- 4 Pore size distributions of SBA-15 with alkyl chains prepared by the
co-condensation of dodecyltrimethoxysilane and TEOS at different ratios
of silane (X) and extraction by acidic ethanol solution. (a) 0%, (b) 5%, (c)
10%, (d) 20% and (e) 30%............................................................. 102
Figure 4- 5 13C CP MAS solid state NMR spectra of SBA-15 with alkyl chains
prepared by the co-condensation of dodecyltrimethoxysilane and TEOS at
different ratios of silane (X) and extraction by acidic ethanol
solution.(a)5% (b)10% (c) 20%(d)30% (e)40%.(a)5% (b)10% (c)
20%(d)30% (e)40%........................................................................ 104
Figure 4- 6 Pore size distributions of SBA-15 with alkyl chains prepared by the
co-condensation of phenyltrimethoxysilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution. (a) 0%, (b) 5%, (c)
10%, (d) 20% and (e) 30%............................................................. 111
Figure 4- 7 Pore size distributions of SBA-15 with alkyl chains prepared by the
co-condensation of diphenyldichlorosilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution. (a) 0%, (b) 5%, (c)
10%, (d) 20% and (e) 30%............................................................. 113
Figure 4- 8 Pore size distributions of SBA-15 with alkyl chains prepared by the
co-condensation of n-octyltrimethoxysilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution. (a) 0%, (b) 5%, (c)
10%, (d) 20% and (e) 30%............................................................. 115
Figure 4- 9 13C CP MAS solid state NMR spectra of SBA-15 with alkyl chains
prepared by the co-condensation of dodecyltrimethoxysilane and TEOS
X=30% extracted by acidic ethanol solution. ................................ 117
Figure 4- 10 13C CP MAS solid state NMR spectra of SBA-15 with alkyl chains
prepared by the co-condensation of phenyltrimethoxysilane and TEOS
X=30% extracted by acidic ethanol solution…………………..…..118
Figure 4-11 13C CP MAS solid state NMR spectra of SBA-15 with alkyl chains
prepared by the co-condensation of diphenyldichlorosilane and TEOS
X=30% extracted by acidic ethanol solution…. ............................ 119
Figure 4-12 13C CP MAS solid state NMR spectra of SBA-15 with alkyl chains
prepared by the co-condensation of n-octyltrimethoxysilane and TEOS
X=30% extracted by acidic ethanol solution.…. ........................... 120
Figure 4-13 Molecular structures and sizes of four aromatic molecules…….
........................................................................................................ 124
Figure 4-14 Chromatograms of four aromatic compounds using homemade
column packing with SBA-15 prepared by the co-condensation of
dodecyltrimethoxysilane and TEOS at different mobile phases (volume
ratio of ACN/H2O). (a) 80/20, (b) 70/30, (c) 60/40 and (d) 50/50……….
........................................................................................................ 125
Figure 4-15 Chromatograms of four aromatic compounds using homemade
column packing with calcined SBA-15 modified with
dodecyltrimethoxysilane at different mobile phases (volume ratio of
ACN/H2O). (a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50................... 127
Figure 4-16 Chromatograms of four aromatic compounds using homemade
column packing with SBA-15 prepared by the co-condensation of
phenyltrimethoxysilane and TEOS at different mobile phases (volume ratio
of ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50................ 129
Figure 4-17 Chromatograms of four aromatic compounds using homemade
column packing with SBA-15 prepared by the co-condensation of
diphenyldichlorosilane and TEOS at different mobile phases (volume ratio
of ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50................ 131
Figure 4-18 Chromatograms of four aromatic compounds using homemade
column packing with SBA-15 prepared by the co-condensation of
n-octyltrimethoxysilane and TEOS at different mobile phases (volume ratio
of ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50................ 133
Figure 4-19 Chromatograms of four aromatic compounds using homemade
column packing with calcined SBA-15 modified with
n-octyltrimethoxysilane at different mobile phases (volume ratio of
ACN/H2O).(a) 80/20, (b) 70/30, (c) 60/40, (d) 50/50.................... 135


List of Tables
Table 1- 1 Classification of pore size according to IUPAC....................... 2
Table 1- 2 Synthesis conditions and results of the characterization of the
SBA15-type materials synthesized with one (I) and two (II) heating steps
.......................................................................................................... 19
Table 1- 3 Separation parameters of functionalized silica spheres with C8 alkyl
groups ............................................................................................... 35
Table 2- 1 Chemicals of experiments....................................................... 40
Table 3- 1 Estimated silane moles of as-synthesized SBA-15 material modified
by different silanes using microwave thermal technique. (A) C8 silane, (B)
C12 silane, (C) C18 silane. ................................................................. 61
Table 3-2 Estimated silane moles of calcined SBA-15 material modified by
different silanes using microwave thermal technique. (A) C8 silane , (B) C12
silane, (C) C18 silane......................................................................... 61
Table 3-3 29Si MAS NMR Chemical shift and silanol reduced ratio of
as-synthesized and calcined SBA-15. .............................................. 66
Table 3-4 29Si MAS NMR Chemical shift and surface coverage ratio of
as-synthesized SBA-15 material modified by different silanes using
microwave thermal technique .......................................................... 68
Table 3-5 Physical properties of as-synthesized SBA-15 material modified by
different silanes using microwave thermal technique. (a) as-synthesized
SBA-15,(b) as-synthesized SBA-15 extracted by acidic ethanol solution ,(c)
C8 silane ,(d) C12 silane ,(e) C18 silane. ......................................... 71
Table 3-6 Elution parameter comparison of the homemade column packing
with as-synthesized SBA-15 material modified with C8 silane using
microwave thermal technique for eluting four aromatic compounds….....
.......................................................................................................... 80
Table 3-7 Parameter comparison of the homemade column packing with
calcined SBA-15 material modified with C8 silane using microwave
thermal technique for eluting four aromatic compounds ................ 82
Table 3-8 Parameter comparison of the homemade column packing with
as-synthesized SBA-15 material modified with C12 silane using microwave
thermal technique for eluting four aromatic compounds................. 84
Table 3-9 Parameter comparison of the homemade column packing with
calcined SBA-15 material modified with C12 silane using microwave
thermal technique for eluting four aromatic compounds................. 86
Table 3-10 Parameter comparison of the homemade column packing with
as-synthesized SBA-15 material modified with C18 silane using microwave
thermal technique for eluting four aromatic compounds................. 88
Table 3-11 Parameter comparison of the homemade column packing with
calcined SBA-15 material modified with C18 silane using microwave
thermal technique for eluting four aromaticcompounds…..……….90
Table 4- 1 Elemental analyses of (a) as-prepared and (b) extracted SBA-15 with
alkyl chains, prepared by the co-condensation of dodecyltrimethoxysilane
and TEOS with X of 30% ................................................................ 98
Table 4- 2 Elemental analyses of SBA-15 with alkyl chains prepared by the
co-condensation of dodecyltrimethoxysilane and TEOS at different ratios
of silane (X) and extraction by acidic ethanol solution. (a) 5%, (b) 10%, (c)
20%, (d) 30% and (e) 40%............................................................. 100
Table 4- 3 Estimated C12 mole of silane on SBA-15 with alkyl chains prepared
by the co-condensation of dodecyltrimethoxysilane and TEOS at different
ratios of silane (X) and extraction by acidic ethanol solution. (a) 5%, (b)
10%, (c) 20%, (d) 30% and (e) 40%.............................................. 100
Table 4- 4 Physical properties of SBA-15 with alkyl chains prepared by the
co-condensation of dodecyltrimethoxysilane and TEOS at different ratios
of silane (X) and extraction by acidic ethanol solution. ................ 103
Table 4- 5 Elemental analyses of SBA-15 with alkyl chains prepared by the
co-condensation of phenyltrimethoxysilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution...................... 108
Table 4- 6 Estimated C6 mole of silane on SBA-15 with alkyl chains which was
prepared by the co-condensation of phenyltrimethoxysilane and TEOS at
different ratios of silane (X) and extraction by acidic ethanol solution….
........................................................................................................ 108
Table 4- 7 Elemental analyses of SBA-15 with alkyl chains prepared by the
co-condensation of diphenyldichlorosilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution...................... 109
Table 4- 8 Estimated C12 mole of silane on SBA-15 with alkyl chains prepared
by the co-condensation of diphenyldichlorosilane and TEOS at different
ratios of silane (X) and extraction by acidic ethanol solution. ...... 109
Table 4- 9 Elemental analyses of SBA-15 with alkyl chains prepared by the
co-condensation of n-octyltrimethoxysilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution...................... 110
Table 4- 10 Estimated C8 mole of silane on SBA-15 with alkyl chains prepared
by the co-condensation of n-octyltrimethoxysilane and TEOS at different
ratios of silane (X) and extraction by acidic ethanol solution. ...... 110
Table 4- 11 Physical properties of SBA-15 with alkyl chains prepared by the
co-condensation of phenyltrimethoxysilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution...................... 112
Table 4- 12 Physical properties of SBA-15 with alkyl chains prepared by the
co-condensation of diphenyldichlorosilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution...................... 114
Table 4- 13 Physical properties of SBA-15 with alkyl chains prepared by the
co-condensation of n-octyltrimethoxysilane and TEOS at different ratios of
silane (X) and extraction by acidic ethanol solution...................... 116
Table 4- 14 Parameter comparison of the homemade column packing with
SBA-15 prepared by the co-condensation of dodecyltrimethoxysilane and
TEOS for eluting four aromatic compounds at different mobile phases….
........................................................................................................ 126
Table 4- 15 Parameter comparison of the homemade column packing with
calcined SBA-15 modified with dodecyltrimethoxysilane for eluting four
aromatic compounds at different mobile phases............................ 128
Table 4- 16 Parameter comparison of the homemade column packing with
SBA-15 prepared by the co-condensation of phenyltrimethoxysilane and
TEOS for eluting four aromatic compounds at different mobile phases….
........................................................................................................ 130
Table 4- 17 Parameter comparison of the homemade column packing with
SBA-15 prepared by the co-condensation of diphenyldichlorosilane and
TEOS for eluting four aromatic compounds at different mobile phases….
........................................................................................................ 132
Table 4- 18 Parameter comparison of the homemade column packing with
SBA-15 prepared by the co-condensation of n-octyltrimethoxysilane and
TEOS for eluting four aromatic compounds at different mobile phases….
........................................................................................................ 134
Table 4- 19 Parameter comparison of the homemade column packing with
calcined SBA-15 modified with n-octyltrimethoxysilane for eluting four
aromatic compounds at different mobile phases............................ 136
參考文獻
1 McBain, J. W., The Sorption of Gases and Vapours by Solids, Rutledge and Sons, London, ch. 5, 1932.
2 IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578.
3 Behrens, P.; Stucky, G. D. Angew. Chem. Int. Ed. Engl. 1993, 32, 696.
4 Lin, Y. C.; Chen, S. H.; Itri, R. J. Phys. : Condens. Matels, 1996, 8, 12169.
5 Todros, T.; Surfactants, F. Academic In Press : London, 1984
6 Zuna, R. Colloids Surf. 1997, 27, 123.
7 Chen, C.; Li, H.; Daris, M. E. Microporous Mater. 1993, 2, 17.
8 Zhao, D.; Huo, Q.; Feng, J.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
9 Cheng, M. J.; Wang, Z. B.; Sakurai, K.; Kumata, F.; Saito, T.; Komatsu, T.; Yashima, T. Chem. Lett. 1999, 2, 131.
10 Luan, Z. H.; Hartmann, M.; Zhao, D.Y.; Zhou, W. Z.; Kevan, L. Chem. Mater. 1999, 11, 1621.
11 Yue, Y. H.; Gedeon, A.; Bonardet, J. L.; Melosh, N.; D'Espinose, J. B.; Fraissard, J. Chem. Commun. 1999, 19, 1967.
12 Sumiya, S.; Oumi, Y.; Uozumi, T.; Sano, T. J. Mater. Chem. 2001, 11, 1111.
13 Han, Y.; Xiao, F. S.; Wu, S.; Sun, Y. Y.; Meng, X. J.; Li., D. S.; Lin, S.; Deng, F.; Ai, X. J. Phys. Chem. B 2001, 105, 7963.
14 Fenelonov, V. B.; Derevyankin, A. Y.; Kirik, S. D.; Solovyov, L. A.; Shmakov, A. N.; Bonardet, J. L.; Gedeon, A.; Romannikov, V. N. Micropor. Mesopor. Mat. 2001, 44, 33.
15 Han, Y.; Wu, S.; Sun, Y. Y.; Li, D. S.; Xiao, F. S.; Liu, J.; Zhang, X. Z. Chem. Mater. 2002, 14, 1144.
16 Corma, A.; Navarro, M. T.; Pariente, J. P. Chem. Commun. 1994, 147.
17 Park, D. H.; Cheng, C. F.; Klinowski, J. J. Mater. Chem. 1997, 7, 159.
18 Luan, Z. H.; Maes, E. M.; Zhao, D. Y.; Czernuszewicz, R. S.; Kevan, L. Chem. Mater. 1999, 11, 3680.
19 Luan, Z. H.; Bae, J. Y.; Kevan, L. Chem. Mater. 2000, 12, 3202.
20 Morey, M. S.; O'Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater. 2000, 12, 898.
21 Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. Chem. Mater. 2001, 13, 552.
22 Chen, H. R.; Shi, J. L.; Zhang, W. H.; Ruan, M. L.; Yan, D. S. Chem. Mater. 2001, 13, 1035.
23 Luan, Z. H.; Kevan, L. Micropoousr Mesoporous Mater. 2001, 44, 337.
24 Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. J. Phys. Chem. B 2001, 105, 8356.
25 Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. Chem. Mater. 2002, 14, 1657.
26 Wang, Y.; Noguchi, M.; Takahashi, Y.; Ohtsuka, Y. Catal. Today 2001, 68, 3.
27 Lee, K. B.; Choi, C. S.; Oh, S. J.; Ri, H. C.; Cheon, J. J Phys. IV 2001, 11, 481.
28 Burri, D. R.; Jun, K. W.; Kim, Y. H.; Kim, J. M.; Park, S. E.; Yoo, J. S. Chem. Lett. 2002, 2, 212.
29 Gao, F.; Lu, Q. Y.; Liu, X. Y.; Yan, Y. S.; Zhao, D. Y. Nano Lett. 2001, 1, 743.
30 Khodakov, A. Y.; Griboval-Constant, A.; Bechara, R.; Zholobenko, V. L. J. Catal. 2002, 206, 230.
31 Huang, M. H.; Choudrey, A.; Yang, P. D. Chem. Commun. 2000, 12, 1063.
32 Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.
33 Tweet, M. Proc. Warsaw. Soc. Nat. Sci. 1903, 14, 6.
34 Martin, A. J. P.;Synge, R. L. M. Biochem. J. 1941, 35, 1358.
35 James, A. T.;Martin, A. J. P. Analyst 1952, 77, 915.
36 Stahl, E. Chemiker-Ztg. 1958, 82, 323.
37 David J. Anderson Anal. Chem. 1995, 65, 475.
38 Minakuchi, H.; Nakanishi, K.; Soga, N.; Lshizuka, N.; Tanaka, N. Anal. Chem. 1996, 68, 3498.
39 Diaz, J. F.;Jr, K. B. Chem. Commun. 1997, 9, 61.
40 Raimondo, M.; Perez, G.; Sinibaldi, M.; De Stefanis, A.; Tomlinson, A. A. G. Chem. Commun. 1997, 1643.
41 Zhao, J. W.; Gao, F.; Fu, Y. L.; Jin, W.; Yang, P. Y.; Zhao, D. Y. Chem. Commun. 2002, 7, 752.
42 Mesa, M.; Sierra, L.; Lopez, B.; Ramirez, A.; Guth, J. L. Solid State Sciences 2003, 1303.
43 Ma, Y.; Qi, L.; Ma, J.; Wu, Y.; Liu,O.; Cheng, H. Colloids and Surfaces A: Physicochem. Eng. Aspects 2003, 1.
44 Vivian Rebbin, Rainer Schmidt, Michael Froba. Angew. Chem. Int. Ed. 2006, 45, 210.
45 Guiru Zhu, Qihua Yang, Dongmei Jiang, Jie Yang, Lei Zhang, Ying Li, Can Li. Journal of Chromatography A, 2006, 1103, 257.
46 Guiru Zhu, Dongmei Jiang, Qihua Yang , Jie Yang, Can Li. Journal of Chromatography A, 2007,1149, 219.
47 Ming-Ming Zheng , Bo Lina, Yu-Qi Feng. Journal of Chromatography A, 2007 ,1164,48.
48 Liming Yang, Yujun Wang, Guangsheng Luo, Youyuan Dai. Particuology,2008, 6 ,143.
49 中原大學化學系 陳育全 碩士論文 2004.
50 中原大學化學系 李岳儒 碩士論文 2006.
51 中原大學化學系陳俊霖碩士論文 2007.
52 中原大學化學系鄭旭軒碩士論文 2001.
53 Jose’ Aguado, Jesu’ s M. Arsuaga, Amaya Arencibia. Microporous and Mesoporous Materials, 2008, 109, 513.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top