跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李浩祥
研究生(外文):Hao-Hsiang Lee
論文名稱:耳石結構及微化學應用在大肚溪河口日本海鰶的成長與洄游環境史之研究
論文名稱(外文):Application of otolith structure and microchemistry to study growth and migratory environmental history of Japanese gizzard shad Nematalosa japonica in the Tatu creek estuary of Taiwan
指導教授:曾萬年曾萬年引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:39
中文關鍵詞:日本海鰶耳石日周輪年輪鍶鈣比年齡與成長棲地利用
外文關鍵詞:Japanese gizzard shadotolithdaily growth incrementsannulusSr:Ca ratiosage and growthhabitat utilization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
日本海鰶 (Nematalosa japonica) 為大肚溪河口域魚類的優勢種,至今其洄游模式、年齡及成長等生活史資訊皆不清楚。本研究藉由耳石的特殊結構及微化學組成,來了解日本海鰶在大肚溪的初期生活史、年齡與成長,及其在海水與淡水之間的移動情形,以便釐清日本海鰶是否為溯河性魚類,以及其在台灣河川環境多變情況下的生活史多樣性。
由體長頻度分佈及生殖腺指數的月別變化得知大肚溪日本海鰶的產卵期為每年2 ~ 4月之間。耳石日周輪結構及鍶鈣比的時序列變化,顯示兩個特殊耳石標記:(1) 仔魚變態為稚魚時所形成的變態輪 (Metamorphosis check),變態日齡為 27.7 ± 5.3天 (n = 40);及 (2) 稚魚回到河口中上游時所形成的河口輪 (Estuary check),其日齡為47.2 ± 9.2天 (n = 18)。根據耳石的年輪結構,所建立的日本海鰶成長方程式為:Lt = 218.3 (1- e - 0.31 ( t + 0.8 ) )。其極限體長 (L∞) 為218.3 mm,成長率 (K) 為0.31 yr-1。
日本海鰶耳石鍶鈣比與水體中的鹽度,呈顯著正相關關係 (p < 0.05)。鹹淡水的界線之鍶鈣比值為3.1 ‰。耳石鍶鈣比的時序列變化顯示,日本海鰶的初期生活史呈現多重的漂散模式,而幼魚皆於河口區哺育,成魚可能至上游淡水環境產卵。此外,隨著年齡的增加可明顯區分為兩種洄游模式:(1) 高鹽度型:耳石平均鍶鈣比值較鹹淡水界線高,其棲地利用偏向河口下段的海水區,此型佔所有分析樣本的36 % (n = 36);及 (2) 低鹽度型:耳石平均鍶鈣比值較鹹淡水界線低,其棲地利用偏河口上段的淡水區,此型佔44 %。兩型的成長方程式有顯著性差異 (p < 0.05),高鹽度型者成長較慢,但極限體長較大;而低鹽度型則成長較快,極限體長較小。日本海鰶棲地利用與成長策略的分歧現象,可能與環境條件變異性的適應策略有關。其應變策略是否為遺傳變異,或是一種逢機現象,則有待研究。
Japanese gizzard shad (Nematalosa japonica) is a dominant clupeid fish in the Tatu creek estuaries. Its life history information such as migratory pattern, age and growth is not clear so far. In this study, otolith structure and microchemistry of Japanese gizzard shad were used to study their age, growth and migratory history.
Monthly variations of fish length frequency distribution and gonadosomatic index indicated that spawning season of this fish was from February to April. The chronological changes of otolith daily growth increment and Sr:Ca ratios patterns presented two otolith checks: (1) metamorphosis check which was assumed to be formed when the fish metamorphosed from larvae to juvenile stages. The aged at metamorphosis was estimated to be 27.7 ± 5.3 days (n = 40) after birth; and (2) estuarine check, which was formed when the juveniles returned to the upper reach of the estuary. The age of return was 47.2 ± 9.2 (n = 18) days after birth. The age-length data back calculated from otolith annulus were fitted with von Bertalanffy growth equation as Lt = 218.3 (1- e - 0.31 ( t + 0.8 ) ), where asymptotic length (L∞) was 218.3 mm and growth rate (K) was 0.31 yr-1.
The Sr:Ca ratios in otolith of Japanese gizzard shad was positively correlated to the salinity of ambient water. (p < 0.05) The regression of otolith Sr:Ca ratios on salinity was y = 0.05 x + 3.10, with an intercept, the saline-freshwater boundary at 3.1 ‰. The chronological patterns of otolith Sr:Ca ratios showed that multiple types of drift existed in early life history, and the fish used estuary as nursery ground. The migratory patterns of the fish in the estuary can be classified into two types: (1) high salinity type (H type), the mean Sr:Ca ratios were higher than the saline-freshwater boundary, indicating the fish lived in the lower reach of the estuary, which consisted of 36 % of the fish examined (n = 36); and (2) low salinity type (L type), the mean otolith Sr:Ca ratios were less than the saline-freshwater boundary, indicating that the fish lived in the freshwater environment of the upper reach of the estuary, which consisted of 44 % of the fish examined. The otolith Sr:Ca ratios also indicated that the adults might migrated annually to the freshwater to spawn. The growth performance was significantly different (p < 0.05) between two types, with lower growth rate and higher asymptotic length for H type; but higher growth rate and lower asymptotic length for L type. If the differentiating habitat utilization and growth strategy of Japanese gizzard shad between these two types is due to random adaptations to the variability of environmental conditions or genetic determined needed further study.
口試委員會審定書………………………………………………………………………i
謝辭……………………………………………………………………..…………….…ii
中文摘要………………………………………………………………………………..iii
英文摘要………………………………………………………………………………..iv
目錄……………………………………………………………………………………..vi
壹、前言
1.1.魚類的洄游模式………………………………………………………………1
1.2.日本海鰶的研究現況……………………………………………………........2
1.3.耳石的研究與應用……………………….…………...…………………........3
1.3.1.耳石的形成與特殊結構……………………………………………….3
1.3.2.耳石的微化學組成…………………………………………………….6
1.4.研究動機及目的………………………………………………………………7
貳、材料與方法
2.1.研究地點的地理特徵………………………………………………………....8
2.2.樣本的採集與處理…………………………………………………………....8
2.3.耳石樣本的製備……………………………………………………………....9
2.4.耳石日周輪及年輪的判讀與測量……………………………………………9
2.5.耳石中鍶與鈣濃度比的測量………………………………………………..10
2.6.資料處理……………………………………………………………………..11參、結果
3.1.大肚溪河口域之溫鹽變化…………………………………………………..12
3.2.單位漁獲量之時空分佈……………………………………………………..12
3.3.平均體長及體長組成之時空變異…………………………………………..12
3.4.生殖腺指數的時空比較……………………………………………………..13
3.5.耳石結構……………………………………………………………………..13
3.5.1.矢狀石的外觀………………………………………………………...13
3.5.2.日周輪及記號………………………………………………………...14
3.5.3.年輪結構及年齡判定………………………………………………...14
3.5.4.耳石大小與體長之關係……………………………………………...14
3.5.5.成長方程式…………………………………………………………...15
3.6.耳石微化學…………………………………………………………………..15
3.6.1.耳石鍶鈣比與鹽度之關係…………………………………………...15
3.6.2.鍶元素的分佈……………………………………..………………….15
3.6.3.洄游環境史的類型…………………………………………………...16
3.6.3.1.初期生活史……………………………………………………16
3.6.3.2.成魚洄游環境史之類型………………………………………17
3.6.4.兩型個體的成長方程式之比較…………………...…………………18
3.6.5.特殊洄游環境史…………………………………………...…………19
肆、討論
4.1.耳石的變態輪與變態日齡的論證…………………………………..............20
4.2.年輪的可靠性與成長參數之比較………………………………..................20
4.3.以耳石鍶鈣比作為洄游環境的指標……………………………………......21
4.4.由GSI、CPUE及耳石核心鍶鈣比來推測產卵地點的環境……………...22
4.5.棲地利用及成長策略的分化現象………………………..............................23
4.6.溯河產卵洄游習性的痕跡………………………………..............................24
4.7.成魚的向海移動現象……………………………………..............................25
伍、總結………………………………………………………....................................26
陸、參考文獻
6.1中文部分………………………………….…………………………….........27
6.2.英文部分……………………………………………………………………..28
圖……………………………………………………………………………................40表……………………………………………………………………………................59
6.1 中文部分
中央氣象局颱風資料庫 (2007). http://61.56.13.28/data.php
中華民國台灣地區漁業統計年報 (1993-2005). 行政院農委會漁業署。
行政院農委會林務局自然保育網 (2007). http://conservation.forest.gov.tw/ct.asp?xItem=7632&ctNode=178&mp=10
沈世傑 (1993). 台灣魚類誌。國立台灣大學動物系印行,台灣,台北,123-124頁
邵廣昭 (2005). 台灣魚類資料庫,網路電子版 version 2005/5
http://fishdb.sinica.edu.tw, (2007/4/4)
陳添水 (2002). 遙測應用於大肚溪口地區環境變遷分析。特有生物研究,4(1),61-74頁
許智傑 (2005). 烏魚仔稚魚期耳石微細構造與初期生活史事件的關係之研究。台灣大學動物學研究所碩士論文,台灣,台北
張至維 (2003). 以耳石微細構造及微化學研究台灣近海烏魚的生活史及其洄游環境。台灣大學動物學研究所博士論文,台灣,台北
張至維、曾萬年 (1999). 台灣中西部大肚溪河口魚類之群聚構造及豐度。88年台灣水產年會論文發表會摘要,173 頁
游蒼林 (1988). 東港產高鼻水滑 Nematalosa japonica, Regan 生殖生物學之初步研究。台灣省水產試驗所試驗報告,45,17-23頁
劉紹平、陳大慶、段辛斌、邱順林、王立民 (2002). 中國鰣魚資源現狀與保護對策。水生生物學報,26 (6),679-684頁
蕭如秀 (1997). 高雄港附近海域產環球海鰶 (Nematalosa come) 之年齡成長與生殖研究。中山大學海洋資源所碩士論文,台灣,高雄


6.2 英文部分
Arai, T., T. Otake and K. Tsukamoto (1997). Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in the Japanese eel Anguilla japonica. Marine Ecology Progress Series 161, 17-22
Beamish, R. J. and G. A. McFarlane (1983). The forgetten requirement for age validation in fisheries biology. Transaction of American Fisheries Society 112(6), 735-743
Blaber, S.J.M. (2000). Tropical estuarine fishes: ecology, exploitation and conservation. Blackwell, Oxford
Brophy, D., T. E. Jeffries and B. S. Danilowicz (2004). Elevated manganese concentrations at cores of clupeid otoliths: possible environment, physiological, or tructural origins. Marine Biology 144, 779-786
Campana, S. E. (1983). Feeding periodicity and the production of daily growth increments in otoliths of steelhead trout (Salmo gairdneri) and starry flounder (Platichthys stellatus). Canadian Journal of Zoology 61, 1591-1597
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263-297
Campana, S. E. (2001). Accuracy, precision and quality control in age determination,
including a review of the use and abuse of age validation methods. Journal of
Fish Biology 59, 197-242
Campana, S. E. (2005). Otolith entering the 21th century. Marine and Freshwater Research 56, 485-495
Campana, S. E., A. J. Fowler and C. M. Jones (1994). Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhwa) using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences 51, 1942-1950
Campana, S. E., G. A. Chouinard, M. Hanson, A. Frechet and J. Bratty (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Science 46, 343-357
Campana, S. E. and J. D. Neilson (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42, 1014-1032
Carlstrom, D. (1963). A crystallographic study of vertebrate otoliths. Biological Bulletin 125, 441-463
Casselman, J. M. (1982). Chemical analyses of the optically different zones in eel
otoliths. In: Proceedings of the 1980 North American Eel Conference, pp. 74-82
Chang, C. W., Y. Iizuka and W. N. Tzeng (2004). Migratory environmental history of grey Mullet Mugil cephalus as revealed by otolith Sr:Ca ratios. Marine Ecology Progress Series 269, 277-288
Chen, M. H. and J. S. Hsiao (1996). The reproductive biology of the gizzard shad,
Nematalosa come (Richardson, 1846), in the Kaohsiung river and its harbor area,
Southern Taiwan. Zoological studies 35(4), 261-271
Cheng, P. W. and W. N. Tzeng (1996). Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Marine Ecology Progress Series 131, 87-96
Chen, Y., D. A. Jackson and H. H. Harvey (1992). A comparison of von Bertalanffy an polynomial functions in modeling fish growth data. Canadian Journal of Fisheries and Aquatic Sciences 49, 1228-1235
Chesney, E. J., B. M. McLee, T. Blanchart and H. L. Chan (1998). Chemisrty of otoliths from juvenile menhaden, Brevooetia patronus : evaluating strontium, strontium: calcium and strontium isotope ratios as environmental indicators. Marine Ecology Progress Series 171, 261-273
Chubb, C. F. and I. C. Potter (1984). The reproductive biology and estuarine
movements of the gizzard shad, Nematalosa vlaminghi (Munro). Journal of Fish
Biology 25: 527-543
Chubb, C. F. and I. C. Potter (1986). Age, growth and condition of the perth herring,
Nematalosa vlaminghi (Munro) (Dorosomatinae), in the Swan Estuary, south
western Australia. Australian Journal of Marine and Freshwater Research 37,
105-12
Correia, A. T., C. Antunes, J. M. Wilson and J. Coimbra (2006). An evaluation of the otolith characteristics of Conger conger during metamorphosis. Journal of Fish Biology 68: 99-119
Daverat, F., J. Tomas, M. Lahaye, M. Palmer and P. Elie (2005) Tracking continental habitat shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde–Garonne–Dordogne watershed. Marine and Freshwater Research 56, 619-627
Day, J.W., C.A.S. Hall, W.M. Kemp and A. Yanez-Arancibia, editors. (1989). Estuarine ecology. John Wiley & Sons. New York. pp.377-437
Deegan, L. A. and B. A. Thompson (1985). The ecology of fish communities in the Mississippi River Deltaic Plain. In A. Yanez-Arancibia (Editor), Fish Community Ecology in Estuaries and coastal lagoons: Towards an Ecosystem Integration. Editorial Universitaria, UNAM-PAUL-ICML, Mexico, D. F., pp.35-56
Degens, E. T., W. G. Deuser and R. L. Haedrich (1969). Molecular structure and composition of fish otoliths. Marine Biology 2, 105-113
Dutil, J. D., M. Castonguay, D. Gilbert and D. Gascon (1999). Growth, condition, and environmental relationships in Atlantic cod (Gadus morhua) in the northern Gulf of St. Lawrence and implications for management strategies in the northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 56, 1818-1831
Edmonds J. S., R. C. J. Lenanton, N. Caputi and M. Morita (1992). Trace elements in the otoliths of yellow-eye mullet (Aldrichetta forsteri) as an aid to stock identification. Fisheries Research 13, 39-51
Elsdon, T. S. and B. M. Gillanders (2002). Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59, 1796-1808
Ewing, G. P., D. C. Welsford, A. R. Jordan and C. Buxton (2003). Validation of age and growth estimates using thin otolith sections from the purple wrasse, Notolabrus fucicola. Marine and Freshwater Research 54, 985-993
Fischer, P. (1999). Otolith microstructure during the pelagic, settlement and benthic phases in burbot. Journal of Fish Biology 54, 1231-1243
Fox, C. J., A. Folkvord and A. J. Geffen. (2003). Otolith micro-increment formation in herring Clupea harengus larvae in relation to growth rate. Marine Ecology Progress Series 264, 83-94
Froese, R. and D. Pauly. (2007). FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2007).
Gauldie R. W. and D. G. A. Nelson (1988). Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comparative biochemistry and physiology. A. Comparative physiology. 90, 501-509
Gillanders, B. M. (2002). Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Marine Ecology Progress Series 240, 215-223
Gillanders, B. M. and M. J. Kingsford (1996). Elements in otolith may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Marine Ecology Progress Series 141, 13-20
Good, S. P., J. J. Dodson, M. G. Meeken and D. A. J. Ryan (2001). Annual variation in size-selective mortality of Atlantic salmon (Salmo salar) fry. Canadian Journal of Fisheries and Aquatic Sciences 58, 1187-1195
Jessop, B. M., J. C. Shiao, Y. Iizuka and W. N. Tzeng (2002). Migratory behaviour and habitatuse by American eels Anguilla rostrata as revealed by otolith microchemistry. Marine Ecology Progress Series 233, 217-229
Jester, D. B. and B. L. Jensen (1972). Life history and ecology of the gizzard shad (Dorosoma cepedianum) with reference to Elephant Butte Lake, New Mexico. New Mexico Agricultural Experiment Station Research Report No.218. pp.56.
Kalish, J. M. (1990). Use of otolith microchemistry to distinguish progeny of sympatric
anadromous and non-anadromous salmonids. Fishery Bulletin 88(4), 657-666
Kalish, J. M. (1995). Application of the bomb radiocarbon chronometer to the validation of redfish, Centroberyx affinis age. Canadian Journal of Fisheries and Aquatic Sciences 52, 1399-1405.
Kawakami, Y., N. Mochioka, K. Morishita, T. Tajima, H. Nakagawa, H. Toh and A.
Nakazono (1998). Factors influencing otolith strontium/calcium ratios in Anguilla
japonica elvers. Environmental Biology of Fishes 52, 299-303
Kennedy, B. D., C. L. Folt, J. D. Blum and C. P. Chamberlain (1997). Natural isotope
markers in salmon. Nature 387, 766-767
Kong, L., M. Kawasaki, K. Kuroda, H. Kohno, and K. Fujita (2004). Spawning characteristics of the konoshiro gizzard shad in Tokyo and Sagami Bays, central Japan. Fisheries Science 70, 116-122
Leguen, I., V. Veron, C. Sevellec, D. Azam, R. Sabatie, P. Prunet and J. L. Bagliniere
(2007). Development of hypoosmoregulatory ability in allis shad Alosa alosa.
Journal of Fish Biology 70, 630-637
Limburg, K. E. (1994). Ecological constrains on growth and migration of juvenile
American shad (Alosa sapidissima Wilson) in the Hudson River estuary, New
York. Ph.D. Dissertation, Cornell University, Ithaca, New York.
Limburg, K. E. (1995). Otolith strontium traces environmental history of subyearling
American shad Alosa sapidissima. Marine Ecology Progress Series 119, 25-35
Limburg, K. E., P. Landergren, L. Westin, M. Elfman and P. Kristiansson (2001).
Flexible Modes of anadromy in Baltic sea trout: making the most of marginal
spawning streams. Journal of Fish Biology 59, 682-695
Limburg, K. E. and J. R. Waldman, editors. (2003). Biodiversity, status, and
conservation of the world’s shads. American Fisheries Society, Symposium 35,
Bethesda, Maryland
Lin, S. H., C. W. Chang, Y. Iizuka and W. N. Tzeng (2007). Salinities, not diet, affect strontium/calcium ratios in otoliths of Anguilla japonica. Journal of Experimental Marine Biology and Ecology 341, 254-263
Mayers, G. S. (1949). Usage of anadromous, catadromous, and allied terms for migratory fishes. Copeia, 89-97
McCormick, M. (1999). Delayed metamorphosis of a tropical reef fish (Acanthurus triostegus): a field experiment. Marine Ecology Progress Series 176, 25-38
McDowall, R. M. (1988). Diadromy in fishes: migrations between freshwater and
marine environments. London, Timber Press.
McHugh, J. L. (1967). Estuarine nekton. In G. H. Lauff(Ed.), Estuaries. American Association of Advanced Science Special Publication 83, 581-619
Miller, J. A. and A. L. Shanks (2004). Evidence for limited larval dispersal in black rockfish (Sebastes melanops): implications for population structure and marine-reserve design. Canadian Journal of Fisheries and Aquatic Sciences 617, 1723-1735
Morales-Nin, B. (1987). Ultrastructure of the organic and inorganic constituents of the otoliths of the sea bass. In: Summerfelt, R. C., G. E. Hall (Editors), Age and growth of Fish. Iowa State University Press, Ames, pp. 331-343
Morales-Nin, B. (2000). Review of the growth regulation processes of otolith daily increment formation. Fisheries Research 46, 53-67
Modin, J., B. Fagerholm, B. Gunnarsson and L. Pihl (1996). Changes in otolith microstructure at metamorphosis of plaice, Pleuronectes platessa L. Journal of Marine Science 53, 745-748
Mugiya, Y. N. (1984). Diurnal rhythm in otolith formation in the rainbow trout, Salmo gairdneri: seasonal reversal of the rhythm in relation to plasma calcium concentrations. Comparative biochemistry and physiology. A. Comparative physiology 78, 289-293
Mugiya, Y., N. Watabe, J. Yamada, J. M. Dean, D. G. Dunkelberger and M. Shimuzu (1981). Diurnal rhythm in otolith formation in the goldfish Carassius auratus. Comparative Biochemistry and Physiology 68A, 659-662
Mugiya, Y. and M. Yoshida (1995). Effects of calcium antagonists and other metabolic modulators on in vitro calcium deposition on otoliths in the rainbow trout Oncorhynchus mykiss. Fisheries Science. 61, 1026-1030
Nelson, G. and L. McCarthy (1995). Two new species of gizzard shads of the genus Nematalosa (Teleostei, Clupeidae, Dorosomatinae) from the Persian-Arabian Gulf. Japanese Journal of Ichthyology 41(4), 379-383
Nelson, G. and M. N. Rothman (1973). The species of gizzard shads (Dorosomatinae) with particular reference to the Indo Pacific region. Bulletin of American Museum, Natural History 150, 131-206
Panfili, J., H. de Pontual, H. Troadec and P. J. White (2002). Manual of Fish Sclerochronology. Brest, France
Pannella, G. (1971). Fish otoliths: daily growth layers and periodical patterns. Science 173, 1124-1127
Parmentier, E., F. Lagardere and P. Vandewalle (2002). Relationships between inner ear and sagitta growth during ontogenesis of three Carapini species, and consequences of life-history events on the otolith microstructure. Marine Biology 141, 491-501
Pasten, G. P., S. Katayama and M. Omori (2003). Timing of parturition, planktonic duration, and settlement patterns of the black rockfish, Sebastes inermis. Environmental Biology of Fishes 68, 229-239
Pavlov, D. A., E. Moksness, V. A. Burmenski (2000). Otolith microstructure characteristics in White Sea spring-spawning herring (Clupea pallasi marisalbi Berg) larvae. Journal of Marine Science 57(4), 1069-1076
Peppin, P., J. F. Dower, J. A. Helbig and W. C. Leggett (2002). Estimating the relative roles of dispersion and predation in generating regional difference in mortality rates of larval radiated shanny (Ulvaria subbifurcata). Canadian Journal of Fisheries and Aquatic Sciences 59, 105-114
Popper, A. N., J. Ramcharitar and S. E. Campana (2005). Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research 56, 497-504
Potts, G. W. and R. J. Wootton (1984). Fish reproduction: strategies and tactics. Harcourt Brace Jovanovich, Publishers, London. pp. 410
Povlov, D. A., E. Moksness and V. A. Burmenski (2000). Otolith microstructure characteristics in White Sea spring-spawning herring (Clupea pallasi marisalbi Berg) larvae. Journal of Marine Science 57, 1069-1076
Radtke, R. L. and D. J. Shafer (1992). Environmental sensitivity of fish otoliths microchemistry. Australian Journal of Marine and freshwater Research 43, 935-951
Radtke, R. L. and R. A. Kinzie (1996). Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevation locations. Transactions of the American Fisheries Society 125, 613-621
Reibisch, J. (1899). Ber die Eizahl be Pleuronectes platessa in die Altersbestimmung dieser Form aus den otolithen. Wissenschaftliche Meeresuntersuchen (Abteilung Kiel) 4, 231-248
Ricker, W. E. (1958). Handbook of computations for biological statistics of fish populations. Bulletin of Fisheries Research Board of Canada 119, 1-300
Ross, R. M. and T. W. H. Backmann (1992). Mechanisms and function of school formation in subyearling American shad (Alosa sapidissima). Journal of applied ichthyology 8, 1-41-4, 143-153
Saito, T., T. Kaga, J. Seki and T. Otake (2007). Otolith microstructure of chum salmon Oncorhynchus keta: formation of sea entry check and daily deposition of otolith increments in seawater conditions. Fisheries Science 73 (1), 27-37
Searcy, S. P. and S. Sponaugle (2001). Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82, 2452-2470
Secor, D. H. (1992). Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass Morone saxatilis. Fishery Bulletin 90, 798-806
Secor, D. H., A, Henderson-Arzapalo and P. M. Piccoli (1995). Can otolith microchemistry chart patterns of migration and habit utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology 192, 15-33
Secor, D. H. and J. R. Rooker (2000). Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46, 359-371
Secor, D. H., T. Ohta, K. Nakayama and M. Tanaka (1998). Use of otolith microanalysis to discriminate estuarine migrations of Japanese sea bass Lateolabrax japonicus distributed in Ariake Sea. Fisheries Science 64, 740-743
Shao, K. T. (1999). Species composition of fish in the coastal zones of the Tsengwen Estuary, with descriptions of five new records from Taiwan. Zoological Studies 38(4): 391-404.
Shen, K. N., Y. C. Lee and W. N. Tzeng (1998). Use of otolith microchemistry to investigate the life history pattern of gobies in a Taiwanese stream. Zoological Studies 37(4), 322-329
Shen, K. N. and W. N. Tzeng (2002). Formation of a metamorphosis check in otoliths of the amphidromous goby Sicyopterus japonicus. Marine Ecology Progress Series 228, 205-211
Shiao, J. C., Y. Iizuka, C. W. Chang and W. N. Tzeng (2003). Disparities in habitat use and migratory behavior between tropical eel Anguilla marmorata and temperate eel A. japonica in four Taiwan rivers. Marine Ecology Progress Series 261, 233 242
Swan, S. C., A. J. Geffen, B. Morale-Nin, J. D. M. Gardon, T. Shimmield, T. Sawyer and E. Massuti (2006). Otolith chemistry: an aid to stock separation of Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) in the Northeast Atlantic and Mediterranean. Journal of Marine Science 63, 504-513
Tanaka, K., Y. Mugiya, J. Yamada (1981). Effects of photoperiod and feeding on daily growth patterns in otoliths of juvenille Tilapia nilotica. Fisheries Bulletin (Seattle) 79(3), 459-466
Takahashi, M., Y. Watanabe, T. Kinoshita and C. Watanabe (2001). Growth of larval and early juvenile Japanese anchovy, Engraulis japonicus, in the Kuroshio-Oyashio transition region. Fisheries Oceanography 10, 235-247
Tsugi, S. and T. Aoyama (1984). Daily growth increments in otoliths of Japanese anchovy larvae Engraulis japonicus. Bulletin of Japanese Society of Scientific Fisheries 50, 1105-1108
Tzeng, W. N. (1994). Temperature effect on the incorporation of strontium in otolith of Japanese eel Anguilla japonica Journal of Fish Biology 45, 1055-1066
Tzeng, W. N. (1996). Effects of salinity and ontogenetic movements on strontium: calcium ratios in the otoliths of Japanese eel Anguilla japonica Temminick and Schlegel. Journal of Experimental Marine Biology and Ecology 199, 111-122
Tzeng, W. N. and Y. C. Tsai (1994). Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migration from the ocean to the rivers of Taiwan. Journal of Fish Biology. 45, 671-683
Tzeng, W. N., J. C. Shiao and Y. Iizuka (2002). Use of otolith Sr/Ca ratios to study the riverine migratory behaviors of Japanese eel Anguilla japonica. Marine Ecology Progress Series 245, 213-221
Tzeng, W. N., K. P. Severin, C. H. Wang and H. Wickstrom (2005). Elemental composition as a discriminator of life stage and growth habitat of the European eel, Anguilla anguilla. Marine and Freshwater Research 56, 629-635
Tzeng, W. N., K. P. Severin and H. Wickstrom (1997). Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Marine Ecology Progress Series 149, 73-81
Tzeng, W. N. and S. Y. Yu (1988). Daily growth increments in otoliths of milkfish, Chanos chanos (Forsskaal), larvae. Journal of Fish Biology 32(4), 495-504
Walker, S. P. W. (2004). Otolith-check formation and accelerated growth associated with sex change in an annual protogynous tropical fish. Marine Ecology Progress Series 266, 201-212
Wang, Y. T. and W. N. Tzeng (1999). Differences in growth rates among cohorts of Encrasicholini punctifer and Engraulis japonicus larvae in the coastal waters off Tanshui River Estuary, Taiwan, as indicated by otolith microstructure analysis. Joural of Fish Biology 54, 1002-1016
Warlen, S. M. (1988). Age and growth of larval gulf menhaden, Brevoortia patronus, in the northern Gulf of Mexico. Fishery Bulletin 86(1), 77-90
Whitehead, P. J. P. (1985). FAO species catalogue. Vol. 7. Clupeoid fishes of the world (suborder Clupeioidei).
Wild, A., J. B. Wexler and T. J. Foreman (1995). Extended studies of increment deposition rates in otoliths of yellowfin and skipjack tunas. Bulletin of Marine Science 57, 555-562
Williams, A. J. (2005) Variation in the periodicity and timing of increment formation in red throat emperor (Lethrinus miniatus) otoliths. Marine and Freshwater Research 56, 529-538
Wilson, D. T. and M. G. Meeken (2002).Growth-related advantages for survival to the point of replenishment in the coral reef fish Stegastes partitus (Pomacentridae). Marine Ecology Progress Series 231, 247-260
Zenitani, H. and R. Kimura (2007). Elemental analysis of otoliths of Japanese anchovy: trail to discriminate between Seto Inland Sea and Pacific stock. Fisheries Sciences 73, 1-8
Zhang, Z. (1992). Relationship of saccular ultrastructure to otolith growth in the teleost Oreochromis niloticus. Journal of Morphology 21, 1-10
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top