跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳逸人
研究生(外文):Chen Yi Jen
論文名稱:雷達波吸收材料Sr(ZnTi)xFe12-2XO19的合成及特性研究
論文名稱(外文):The study of the synthesis and the characterization of materials of Sr(ZnTi)xFe12-2XO19 rader absorbing
指導教授:洪耀勳洪耀勳引用關係
指導教授(外文):Hong Yaw Shun
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:115
中文關鍵詞:鐵氧磁體鍶六方晶形雷達波吸收材料磁性材料
外文關鍵詞:HexaferriteM-type hexagonal ferritemagnetic material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
M-型的Sr(ZnTi)xFe12-2xO19六方晶鐵氧磁體已採用水溶液燃燒法(ACS)製成。在此製程中是以酐胺酸(Glycine)充當還原劑而以金屬硝酸鹽充當氧化劑。
FT-IR光譜顯示溶膠-凝膠中的酐胺酸在不同pH值的溶膠-凝膠中以H3N+CH2COOH或以H2N-CH2COO-等不同形式。DSC的測試結果溶膠-凝膠呈現出兩個放熱波峰,放熱波峰的熱量多寡及放熱反應的溫度位置受溶膠-凝膠的pH值及R值的影響。同時TGA圖亦顯示pH值及R值不同時溶膠-凝膠的熱分解反應機構不同 。
自蔓性燃燒後的灰經X光繞射測試,其結果顯示灰皆呈現γ-Fe2O3的晶相。組成為Sr(ZnTi)xFe12-2xO19(x=0 , 0.5 , 1.0 , 1.5 , 2.0)粉體在1000℃以下的煅燒處理後,粉體中含有Sr-M型及Sr-Y型兩種六方晶形,但粉體經1200℃熱處理後,已完全呈現Sr-M型的六方晶形。Sr-M六方晶形的晶格常數a值約為定值(5.88 Å)但晶格常數c值欲隨x值上升而由23.025 Å上升至23.105 Å。且pH值及R值的改變不影響粉體的晶格常數。
掃描式電子顯微鏡(SEM)圖片顯示,燃燒後所生成灰(as-burntpowders)的微結構是由粒徑25nm ~50nm的顆粒所組成。所有的Sr(ZnTi)xFe12-2xO19的灰,再經1200℃的煅燒後,粉體的粒徑已增大而且平均大小約至0.500μm~1.20μm之間。
材料磁滯迴線測量顯示,陽離子添加的Sr(ZnTi)xFe12-2xO19為軟磁材料但SrFe12O19為硬磁材料。經1200℃煅燒的SrFe12O19樣品其Mr、Ms及Hc值分別為63.54emu/g、35.27emu/g及2.289kG。Sr(ZnTi)Fe10O19為最佳軟磁材料具有最高的Ms值(69.23emu/g),是一種優越的磁紀錄材料。
在頻率1.0MHz至1.0GHz間,粉體Sr(ZnTi)xFe12-2xO19的介電常ε’分佈於約14~4之間,ε〞皆接近於零。在3.0GHz至8.0GHz微波的吸收測量中顯示Sr(ZnTi)Fe10O19鐵氧磁體可以使反射損失達-10dB的量增大約10﹪左右,所以此系列材料是一種極佳的雷達波吸波材料。
M-type hexagonal ferrite of Sr(ZnTi)xFe12-2xO19 has been synthesized by aqueous solution combustion synthesize method (ACS). Glycine was used as a reducing agent and metallic nitrates were used as an oxidizing agent in these synthesize reactions.
The spectrum of FT-IR of sol-gels show that the glycine molecure combine to metallic ions sach as Sr2+ and Fe3+ in the different forms either H3N+CH2COOH or H2NCH2COO- depended the pH value of the sol-gels.
The results of DSC measurements of the sol-gels show that each kind of sol-gel has two exothermic peaks during the heating process . The amount of released heat and the position of temperature for each peak was determined by the pH value and the molar ratio of glycine to nitrate of sol-gel, R. Furthermore, based on TGA spectrum, the sol-gel with different pH and R values will result in different mechanism of decomposition reaction.
By using X-ray diffraction it is found that the ashes of auto-combustion of all sol-gels contain the γ-Fe2O3 phase in powders. X-ray diffraction patterns of Sr(ZnTi)xFe12-2xO19(x=0 , 0.5 , 1.0 , 1.5 , 2.0)powders annealing at 1000℃reveal that Sr-M type and Sr-Y type of hexagonal ferrites are coexist in each sample . After the powders were heated at 1200℃, however, only Sr-M type hexagonal ferrite were observed.
Lattice constants a of Sr-M type hexagonal ferrites of Sr(ZnTi)xFe12-2xO19 is almost constant at the values of 5.88 Å , but the lattice constants c of samples increase from 23.025 Å to 23.105 Å with increasing of x value. The lattice constants are independent to the pH and R values.
Scanning electron microscopy (SEM) images show that the microstructure of the as-burnt powders consists of relative small size grains (25nm~50nm).The grain size of all as-burnt powder of Sr(ZnTi)xFe12-2xO19 increase rapidly with increasing of annealing temperature . At the annealing temperature of 1200℃, the average grain size is around 0.500μm~1.20μm .
The magnetic hysteresis loop measurements of Sr(ZnTi)xFe12-2xO19 powder species indicate that all cation-doped Sr-M type hexagonal ferrites are soft magnetic materials except SrFe12O19 .
The saturation magnetization (Ms), remanent magnetization (Mr) and coercitivity (Hc) of SrFe12O19 annealed at 1200℃ are 63.54 emu/g ,35.27emu/g and 2.29kG respectively . Sr(ZnTi)Fe10O19 has the highest saturation magnetization (Ms=69.23emu/g), which is an outstanding soft magnetic material.
Within the frequency range of 1.0MHz to 1.0 GHz, the dielectric constant ε’of Sr(ZnTi)xFe12-2xO19 powders was found between 14~4, while the ε”is close to zero. The measurements of the microwave absorptions of these Sr-M type hexagonal ferrites between 3.0GHz and 8.0GHz show that the ferrites contain about 10﹪of –10Db and 90﹪of –5dB reflection loss. Therefore, this series of ferrites are excellent radar wave absorbing materials.
目錄

誌 謝 ii
摘 要 iii
ABSTRACT v
目 錄 vii
表目錄 x
圖目錄 xi
1.緒 論 1
1.1.前 言 1
1.2.文獻回顧 2
1.2.1 六方晶鐵氧磁體的製法 2
1.3.研究動機 4
1.4.微波吸收原理 5
1.4.1 微波吸收材料的分類 6
2.實 驗 9
2.1.化學藥品 9
2.2.儀器設備 9
2.3.製備鍶六方晶鐵氧磁體 10
2.3.1 M型鍶六方晶鐵氧磁體SrFe12O19之合成 11
2.3.2 鍶六方晶鐵氧磁體Sr(ZnTi)xFe12-2xO19之合成 12
2.4.各種儀器測試 16
2.4.1 傅立葉紅外線光譜儀(FT-IR)測量 16
2.4.2 熱分析(DSC及TGA)測量 16
2.4.3 掃描式電子顯微鏡(SEM)測量 16
2.4.4 .X光繞射儀(XRD)測試 17
2.4.5 樣品振盪磁測試儀(VSM) 17
2.4.6 微波吸收測試 17
3.結果與討論 19
3.1.傅立葉紅外線光譜儀(FT-IR)測量結果分析 19
3.2.熱分析 25
3.3 X光繞射圖譜分析 38
3.4.微結構特性分析 51
3.5.磁性質分析(Magnetic Properties) 61
3.6.微波吸收性質探討 69
3.6.1 材料介電常數測量 69
3.6.2 粉體-環氧樹脂複合材料的微波吸收特性分析 74
4.結 論 81
參考文獻 84
附 錄 89
附錄壹:FT-IR光譜圖 89
附錄貳:X-光繞射值與d 值 93
附錄參:SEM圖片 108
附錄四:介電常數圖 113
論文發表 114
自 傳 115
[1] S.Castro , M.Gayoso , C.Rodriguez ,“A Study of the Combustion Method to Prepare Fine Ferrite Particles,”Joural of Solid State Chemistry, Vol.134, pp.227-231,1997.
[2] .Jianguo Huang, Hanrui Zhuang , Wen-Lan Li ,“Synthesis and Characterization of Nano Crystalline BaFe12O19 Powders by Low Temperature Combustion,” Materials Research Bulletin ,Vol.38, pp.149-159, 2003.
[3] S. Ram, J. C. Joubert,“Synthesis and Magnetic Properties of SrZn2-W Type Hexagonal Ferrites Using a Partial 2Zn2+→Li+Fe3+ Substitution: a New Series of Permanent Magnets Materials,” Journal of Magntism and Magnetic Materials, Vol. 99, pp.133-144, 1991.
[4] Yang Bai, Ji Zhou, Zhilun Gui, Zhensing Yue, Longtu Li, “Preparation and Magnetic Characterization of Y-Type Hexaferrites Containing Zinc, Cobalt and Copper,”Materials Science and Engineering B, Vol.99, pp.266-269, 2003.
[5] Zhang Haijun, Yao Xi, Zhang Liangying, “The Preparation and Microwave Properties of Ba2ZnzCo2-ZFe12O22 Hexaferrites,”Journal of the European Ceramic Society, Vol.22, pp.835-840, 2002.
[6]. P. Huang, L. J. Deng, J. X. Xie, D. F. Liang, L. Chen, “Effect of BST Additive on the Complex Permeability and Permittivity of Z-Type Hexaferrite in the Range of 1MHz-1GHz,” Journal of Magntism and Magnetic Materials, Vol.271, pp.97-102, 2004.


[7] ...Zhenxing Yue, Longtu Li, Ji Zhou, Hongguo Zhang, Zhilun Gui, “Preparation and Characterization of NiCuZn Ferrite Nanocrystalline Powders by Auto-Combustion of Nitrate-Citrate Gels,”Materials Science and Engineering B, Vol.64, pp.68-72, 1999.
[8] ..R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, “Halide Removal from BaM(BaFe12O19) and SrM(SrFe12O19) Ferrite Fibers Via a Steaming Process,” Materials Research Society, Vol.16, No.11, pp.3162-3169, Nov 2001.
[9]…F.Zekun, H.Aiping, H.Huahui, “Development and Characterization of (Ba-Mn-Ti) Based Hexagonal Ferrite for Microwave Absorbing Paint,”IEEE, pp.420-423, 2002.
[10] .Z. Somogyvari, E. Svaib, G. Meszaros, K. Krezhov, P. Konstantinov, I. Nedkov, F. Bouree, “Nanosize Effects on the Microstructure of BaFe10.3Co0.85Ti0.85O19 Hexaferrite,”Journal of Applied Physics, Vol. 91, No.9, pp.6185-6187, 2002.
[11] J. Smit, H. P. Wiju, “Ferrites,” Philips Technical Library, Eindhoven, The Netherlands, 1959.
[12] Zhang Haijun, Yao Xi, Zhang Liangying, “The Preparation and Microwave Properties of Ba2ZnzCo2-ZFe12O22 Hexaferrites,”Journal of the European Ceramic Society, Vol.22, pp.835-84, 2002.
[13].Zhang Haijun, Liu Zhichao, Yao Xi, Zhang Liangying, Wu Mingzhong,“Dielectric and Magnetic Properties of ZnCo-Substituted X Hexaferrites Prepared by Citrate Sol-Gel Process,”Materials Research Bulletin, Vol. 38, pp.363-372, 2003.


[14] Zhang Haijun, Yao Xi, Zhang Liangying, “The Preparation and Microwave Properties of BaZn2-ZCozFe16O27 Ferrite Obtained by a Sol-Gel Process,”Ceramics Intermational, Vol.28, pp.171-175, 2002.
[15]. Z. Haijun, L.Zhichao , M.Chenliang , Y.Xi , Z.Liangying , W.Mingzhong , M.C.A.P 80(2003)129-134
[16]..R. C. Pullar, S. G. Appleton, A. K. Bhattacharya, “The Manufacture, Characterization and Microwave Properties of Aligned M Ferrite Fibres,”Journal of Magnetism and Magnetic Materials, Vol.186, pp.326-332, 1998.
[17]..Zhang Haijun, Liu Zhichao, Ma Chengliang, Yao Xi, Zhang Liangying,“Complex Permittivity, Permeability, and Microwave Absorption of Zn- and Ti-Substituted Barium Ferrium Ferrite by Citrate Sol-Gel Process,” Materials Science and Engineering B, Vol.96, pp.289-295,2002.
[18] Zhang Haijun, Yao Xi, Zhang Liangying, “The Preparation and Microwave Properties of Ba3ZnZCo2-ZFe24O41 Ferrite by Citrate Sol-Gel Process,” Materials Science and Engineering B, Vol.84, pp.252-257, 2001.
[19] Zhang Haijun, Yao Xi, Zhang Liangying, “The Preparation and Microwave Properties of Ba2ZnXCo2-XFe28O46 Hexaferrites,”Journal of Magnetism and Magnetic Materials, Vol.241, pp.441-446, 2002.
[20] S. A. Jadhav, “Magnetic Psubstituted Li-Cu Ferrites,” Journal of Magnetism and Magnetic Materials, Vol.224, pp.167-172, 2001.
[21] S. S. bellaed, R. B. pujar, B. K. Chougule, “Structural and Magnetic Properties of Some Mixed Li-Cd Ferrites,”Materials Chemistry and Physics, Vol. 52, pp.166-169, 1998.

[22] A. Ataie, S. Heshmati-Manesh,“Synthesis of Ultra-Fine Particles of Strontium Hexaferrite by a Modified Co-Precipitation Method,”Journal of the European Ceramic Society, Vol.21, pp.1951-1955, 2001.
[23]..T. Nakamura, E. Hankui, “Control of High-Frequency Permeability in Polycrystalline (Ba, Co)-Z-Type Hexagonal Ferrite,” Journal of Magnetism and Magnetic Materials, Vol.257, pp.158-164, 2003.
[24] Xiaohui Wang, Longtu Li, Shuiyan Shu, Zhenxing Yue, Zhenwei Ma, Ji Zhou, “Low-Temperature Sintering of Z-Type Hexaferrite for Application in MLCIs,”Materials Letters, Vol.55, pp.8-11, 2002.
[25] Z. C. Yuan, A. J. Williams, T. C. Shields, S. Blackburn, C. B. Ponton, J. S. Abell, I. R. Harris, “The Production of Sr Hexaferrite Thick Films by Screen Printing,” Journal of Magnetism and Magnetic Materials, Vol.247, pp.257-269, 2002.
[26] Z. Haijun, L. Zhichao, Y. Xi, Z. Liangying, W. Mingzhong, “Complex Permittivity and Permeability Dependence of Ba4Zn2-ZCoZFe36O60 U-Type Hexaferrites Prepared by Citrate Sol-Gel on Composition, Annealing Temperature and Frequency,”Materials Science and Engineering B, Vol.97, pp.160-166, 2003.
[27] Z. Yue, L. Zhang, X. Wang, J. Zhou, Z. Gui, L. Li, “Low-Temperature Sintered Hexaferrites for High-Frequency Multiplayer Chip Inductors,”Journal of Alloys and Compounds, Vol.361, pp.265-269, 2003.
[28] M. R. Meshram, B. Sinha, N. K. Agrawal, P. S. Misra, “Development and Characterization of (Ba-Mn-Ti) Based Hexagonal Ferrite for Microwave Absorbing Paint,”IEEE , Vol.2, pp.790-793, 2002.
[29].V. Berbenni, A. Marini, N. J. Welham, P. Galinetto, M. Cmozzati, “The Effect of Mechanical Milling on the Solid State Reactions in the Barium Oxalate-Iron(III) Oxide System,”Journal of the European Ceramic Society, Vol.23, pp.179-187, 2003.
[30].M. S. Pinho, M. L. Gregori, R. C. R. Nunes, B. G. Soares, “Performance of Radar Absorbing Materials by Waveguide Measurements for X- and Ku-Band Frequencies,”European Polymer Journal, Vol.38, pp.2321-2327, 2002.
[31] Martha Pardavi-Horvath, “Microwave Applications of Soft Ferrites,” Journal of Magnetism and Magnetic Materials, Vol.215-216, pp.171-183, 2000.
[32].Yen-Pei Fu, Cheng-Hsiung Lin, Ko-Ying Pan, “Strontium Hexaferrite Powders Preparaed by a Microwave-Induced Combustion Process and Some of Their Properties,”Journal of Alloys and Compounds, Vol.349, pp.228-231, 2003.
[33] P. Wartewig, M. K. Krause, P. Esquinazi, S. Rosler, R. Sonntag, “Magnetic Properties of Zn- and Ti-Substituted Barium Hexaferrite,” Journal of Magnetism and Magnetic Materials, Vol.192, pp.83-99, 1999.
[34] K. J. Vinoy, R. M. Jha, 「RADAR ABSORBING MATERIALS」, National Aerospace Laboratories, India, pp.11, 1996.
[35] 張洋舜, 微波吸收材料發展簡介, 新新季刊,第21卷,第四期, 民國82年7月1日
[36] 夏宏中,隱形技術在武器載具運用之探討,新新季刊,第29卷,第四期,民國90年10月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top