|
[1] Amdahl. G.M., “Validity of the single processor approach to achieving large scale computing capabilities, In AFIPS Conference Proceedings Vol. 30, pp. 483–485, 1967. [2] Čada. M., M. Torrilhon., “Compact third-order limiter functions for finite volume methods, J. Compt. Phys., Vol.228, pp. 4118–4145, 2009. [3] Castro M.J, Garc´ıa-Rodr´ıguez., J.A, Gonz´alez-Vida., J.M, Par´es. C., “Solving shallow-water systems in 2D domains using Finite Volume methods and multimedia SSE instructions, Journal of Computational and Applied Mathematics, Vol. 221, pp. 16-32, 2008. [4] Chris Lomont., “Introduction to Intel Advanced Vector Extensions, Intel Corporation, 2011. [5] Colella P., A direct Euleman MUSCL scheme for gas dynamics, SIAM J. Sez. Star Comput. 6, 104-117, 1985. [6] Colella P. and H M. Glaz, Efficmnt solution algorithms for the Rmmann problem for real gases, J. Cornput. Phys. 59, 264-289, 1985. [7] Davis. S. F., “Simplified Second-Order Godunov-Type Methods, SIAM J. ScI. STAT. COMPUT., Vol. 9, pp. 3, 1988. [8] Euler Leonard. “Principes généraux du mouvement des fluides Mémoires de l'Academie des Sciences de Berlin, 1757. [9] Flynn. M. J., “ Very High-Speed Computing Systems, Proc. IEEE, Vol. 54, pp. 1901-1909, 1966. [10] Fragalla. John., “The Future of CPU Architectures Sun Microsystems, Inc., 2004. [11] Gustafson. J.L., “Reevaluating Amdahl's Law, Communications of the ACM, Vol. 31(5), pp.532-533, 1988. [12] Gorobets A.V., Trias F.X., Oliva A., “A parallel MPI + OpenMP + OpenCL algorithm for hybrid supercomputations of incompressible flows, J. Computers & Fluids Vol 88, pp. 764-772, 2013. [13] Gottlieb Siga, Mullen Julia S., Ruuth Steven J., “A Fifth Order Flux Implicit WENO Method, Journal of Scientific Computing, Vol. 27, Nos. 1–3, 2006. [14] Gropp William, Lusk Ewing, Skjellum Anthony., “Using MPI: Portable Parallel Programming with the Message-passing Interface, In Scientific and Engineering Computation.Cambridge, Mass : [N.p.]. 1999. [15] Harten A., Lax P. D., van Leer B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAMJ Rev, Vol. 25(1), pp. 35–61, 1983. [16] Hayase, T., Humphrey, J. A. C. and Greif, R. “A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-volume Iterative Calculation Procedures, J. Comput. Phys., Vol. 98, pp. 108–118, 1992. [17] Intel., “Intel Architecture Software Developer’s Manual, Intel Corporation, 1999. [18] Kuo Fang-An., Matthew R. Smith., Chih-Wei Hsieh., Chau-Yi Chou., Jong-Shinn Wu., “GPU acceleration for general conservation equations and its application to several engineering problems, J. Compt. & Fluids, Vol. 45, pp. 147-154, 2011. [19] Koren B., “A robust upwind discretization method for advection, diffusion and source terms, in Koren Vreugdenhil (Ed.), Numerical Methods for Advection–Diffusion Problems, Vieweg, Braunschweig, Germany, pp. 117–138, 1993. [20] Kleen. Andreas. “A NUMA API for LINUX, SUSE LINUX Products GmbH, A Novell Business, 2005. [21] Liu. Ji-Yueh, Matthew R. Smith., Fang-An Kuo., and Jong-Shin Wu., “Hybrid OpenMP/AVX Acceleration of a Split Harten, Lax and van Leer Method for the Shallow Water and Euler Equations, Accepted. [22] Osher Stanley, “Convergence of Generalized Muscl Schemes, Siam J. Nmer. Anal., Vol. 22,(5), 1985. [23] Rechtin Eberhardt., “Systems architecting: creating and building complex systems, Prentice Hall, Inc. Englewood Cliffs, NJ, USA. 1991. [24] Roe, P. L., “Some Contributions to the Modelling of Discontinuous Flows, Lectures in Applied Mechanics, Springer-Verlag, Berlin, Vol. 22, pp. 163–193, 1985. [25] Schulz-Rinne. C.W., J.P. Collins., H.M. Glaz,“Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Compt., Vol. 14, pp. 1394–1414, 1993. [26] Smith M.R., Chen. Y.C., Liu. J.Y., Ferguson Alexander., Wu. J.S. “Extension of Uniform Equilibrium Flux Method (UEFM) to Second Order Accuracy and its Graphics Processing Unit Acceleration, Procedia Engineering., Vol. 61, pp. 70-75, 2013. [27] Serna. S.,“A class of extended limiters applied to piecewise hyperbolic methods, SIAM J. Sci. Compt., Vol. 28, pp. 123–140, 2006. [28] Shu C.W., Osher S.,“Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comp. Phys., Vol. 77, pp. 439–471, 1988. [29] Sweby P.K., “High resolution schemes using flux limiters for hyperbolic conservation laws Siam J. Nmer. Anal., Vol. 21,(5), 1984. [30] Sohn Sung-IK, “A New TVD-MUSCL Scheme for Hyperbolic Conservation Laws, Computers and Mathematics with Applications, Vol. 50, pp.231-248, 2005. [31] SOD Gary A. “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws J. Comput. Phys., Vol, 27, pp.1-31,1978. [32] Spinellis Diomidis., “A Critique of the Windows Application Programming Interface, University of the Aegean, Karlovasi, Greece, 1997. [33] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, second ed., Springer, Berlin, Germany, 1999. [34] Trangenstein John A. “Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, USA , 2009. [35] Van Leer B. “Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme, J. Comput. Phys., Vol, 14, pp. 361-370, 1974. [36] Van Leer, B., “Towards the Ultimate Conservative Difference Scheme V: A Second-Order Sequel to Godunov’s Method, J. Comput. Phys., Vol. 32, pp. 101–136, 1979. [37] Van Leer, B., “Flux-Vector Splitting For The Euler Equations, the 8th International Conference on Numerical Methods in Fluid Dynamics, Aachen, Germany, 1982. [38] V. V. Rusanov.,“Calculation of Intersection of Non-Steady Shock Waves with Obstacles, J. Compt. Math. Phys. USSR., Vol. 1, pp. 267–279, 1961. [39] Zhang. Shanghong, Xia. Zhongxi, Yuan. Rui, Jiang. Xiaoming., “Parallel computation of a dam-break flow model using OpenMP on a multi-core computer, Journal of Hydrology, Vol. 512, pp. 126–133, 2014.
|