跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林上恩
研究生(外文):LIN,SHANG-EN
論文名稱:聚氨酯泡棉曝氣生物濾池處理生活汙水之同時硝化脫硝效率
論文名稱(外文):Nitrogen Removal from Domestic Wastewater through Simultaneous Nitrification and Denitrification in a Polyeurathane Foam Biological Aerated Filter
指導教授:黃家勤黃家勤引用關係
指導教授(外文):HWANG,CHI-CHIN
口試委員:鄭幸雄翁誌煌
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:生態科學與技術學系環境生態碩士班
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:廢水處理同時硝化脫硝曝氣生物濾池聚氨酯泡棉
外文關鍵詞:wastewater treatmentsimultaneous nitrification and denitrificationbiological aerated filterspolyurethane foam
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
廢水含氮物質過度排放所造成的水體優養化已成為全球普遍現象,嚴重影響水域生態與供水水質,脫氮處理已逐漸成為廢水處理的必要程序。生物脫氮為目前廢水脫氮程序中的主要技術,其中同時硝化與脫硝(simultaneous nitrification and denitrification, SND)生物膜反應器具有體積小、污泥產量低,以及系統穩定等優勢,為近年來受到廣泛研究的廢水脫氮技術。本研究使用人工廢水模擬生活污水,以聚氨酯泡棉做為載體,並採用好氧與厭氧適度區隔的槽體設計,進行廢水脫氮效率與最佳操作參數的探討。研究中所測試的操作條件包括三種不同的反應槽溶氧濃度,1.5、2.5、3.5 mg/L,搭配8孔、12孔、16孔三種隔板開孔數量,總共九組操作條件進行系統脫氮效率比較。研究結果顯示,隔板開孔數為12孔,溶氧濃度2.5 mg/L時達到系統最佳脫氮效率。使用最佳操作條件進行長期試驗顯示,系統中總溶解性無機氮的去除率為54.6 ± 4.8 %,化學需氧量去除率為92.9 ± 2.7 %。研究結果顯示本聚氨酯泡棉SND反應器為一個操作簡單效率穩定,且具有廢水脫氮及有機物去除功能的生物反應器。
The discharge of excessive nutrients has caused eutrophication of surface waterbodies throughout the world. Nutrient removal has become a necessary procedure for wastewater treatment. In nitrogen removal, biological processes are currently the major technology employed in wastewater treatment. Biofilm technologies has been extensive studied for use in nitrogen removal from wastewater. Simultaneous nitrification and denitrification (SND) using biofilm reactors has the advantage of small size, low sludge production, and system stability. In this study, a biological aerated filter (BAF) was designed for the study of SND in attached growth systems. Synthetic domestic wastewater was used as feeding water, with polyurethane foams used as biological carriers. The reactor was divided in to an aerobic and an anaerobic compartments to facilitate SND. The efficiency of the system and optimal operating parameters were explored. The study tested three different dissolved oxygen concentrations (1.5, 2.5, 3.5 mg / L) with three different degrees of tank separation (8, 12, and 16 connecting holes). With a factorial design, the nitrogen removing efficiency of nine operating conditions were compared. The system reached an optimum nitrogen removal under the condition of 12 holes and dissolved oxygen of 2.5 mg/L. Long-term test using the optimal conditions showed that the removal rate is 54.6 ± 4.8 % for dissolved inorganic nitrogen and 92.9 ± 2.7 % for COD. The study shows that a BAF using polyurethane foams is a simple, stable, and effective bioreactor for nitrogen removal. It is capable of simultaneously removing organic matters and nitrogen from wastewater.
目錄
摘要
Abstract
誌謝
目錄
表目錄
圖目錄
第一章 前言
1.1 研究緣起
1.2 研究目的
第二章 文獻回顧
2.1 廢水生物處理方法
2.1.1 活性汙泥法
2.1.2 固定膜生長程序
2.2 生物脫氮程序
2.2.1 硝化與脫硝
2.2.2 氧限制自營性硝化脫硝
2.2.3 厭氧氨氧化
2.2.4 短程硝化脫硝
2.2.5 同時硝化脫硝
2.3 固定床生物膜法之同時硝化脫硝
2.3.1 固定膜生物濾床之載體
2.3.2 各類型生物載體使用情形
2.3.3 聚氨酯泡棉載體使用情形
2.3.4 聚氨酯泡棉做為同時硝化脫硝之生物載體
2.3.5 聚氨酯泡棉生物載體效率之影響因子
第三章 實驗材料和方法
3.1 系統配置及載體規格
3.1.1 系統配置
3.1.2 載體規格
3.1.3 人工廢水特性
3.2 研究方法
3.2.1 試驗流程
3.2.2 採樣與水質分析
3.2.3 數據分析
第四章 結果與討論
4.1 DIN做為系統脫氮效率指標
4.2 系統最佳設計與操作條件
4.2.1 各種溶氧與內外槽交換條件組合之效率
4.2.2 最佳溶氧之確認試驗
4.2.3 反應器負荷
4.3 系統效率各影響因子之顯著性
4.3.1 溶氧與擴散孔數目影響之顯著性
4.3.2不同條件組合下系統效率差異之顯著性
4.4 系統之長期效率試驗
第五章 結論與建議
5.1 結論
5.2 建議
參考文獻

1.S. W. Nixon, “Coastal marine eutrophication: a definition, social causes, and future concerns,” Ophelia, vol. 41, no. 1, pp.199–219, 1995.
2.R. G. Wetzel, Limnology: An Overview. Philadelphia Pennsylvania, Saunders College Publishing, 1983.
3.J. M. Burkholder, Eutrophication and oligotrophication, Encyclopedia of Biodiversity, vol. 2. S. Levin (ed.), New York, Academic Press, pp. 649–670, 2000.
4.L. Twomey, and P. Thompson, “Nutrient limitation of phytoplankton in a seasonally open bar-built estuary: Wilson Inlet, Western Australia,” Journal of Phycology, vol. 37, no. 1, pp. 16–29, 2001.
5.H. W. Paerl, and V. J. Paul, “Climate change: Links to global expansion of harmful cyanobacteria,” Water Research, vol. 46, no. 5, pp. 1349–1363, Apr. 2012.
6.E. Jeppesen, M. Sondergaard, M. Meerhoff, T. L. Lauridsen, and J. P. Jensen, “Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead,” Hydrobiologia, vol. 196, pp. 239–252, 2007.
7.X. Yang, X. Wu, H. L. Hao, and Z. L. He, “Mechanisms and assessment of water eutrophication,” Journal Zhejiang University Science B, vol. 9, no. 3, pp. 197–209, Mar. 2008.
8.D. M. Anderson, P. M. Glibert, and J. M. Burkholder, “Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences,” Estuaries, vol. 25, no. 4b, pp. 704–726, Aug. 2002.
9.National Science and Technology Council, An Assessment of Coastal Hypoxia and Eutrophication in U.S. Waters, Committee on Environment and Natural Resources, pp. 12–24, Nov. 2003.
10.唐存宏,「工業廢水氨氮處理概述」,環保技術與法規資訊電子報,第105期,2013年。
11.A. Mittal, “Biological wastewater treatment,” Water Today, pp. 32–44, Aug. 2011.
12.G. Tchobanoglous, F. L. Burton, Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed, McGraw-Hill, New York, 1991.
13.Y. H. Ahn, “Sustainable nitrogen elimination biotechnologies: A review,” Process Biochemistry, vol. 41, no. 8, pp. 1709–1721, Aug. 2006.
14.G. Tchobanoglous, F. L. Burton, and H. D. Stensel, Wastewater engineering treatment and reuse, 4th Ed. New York: Metcalf & Eddy Inc, 2004.
15.G. Z. Breisha, and J. Winter, “Bio–removal of nitrogen from wastewaters–A review,” Nature and Science, vol. 6, no. 12, pp. 508–528, 2010.

16.B. Wang, S. He, L. Wang, and L. Shuo, “Simultaneous nitrification and denitrification in MBR,” Water Science Technology, vol. 52, pp. 435–442, 2005.
17.J. B. Holman, and D. G. Wareham, “COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process,” Biochemical Engineering, vol. 22, no. 2, pp. 125–133, Jan. 2005.
18.A. Christian, “New treatment in biological wastewater treatment,” Water Today 2014, pp. 32–40, 2014.
19.K. Nakano, H. Iwasawa, O. Ito, T. J. Lee, and M. Matsumura, “Simultaneous nitrification–denitrification under constant dissolved oxygen condition by using two different immobilization carriers with specific oxygen transfer characteristics,” Japanese Journal of Water Treatment Biology, vol. 40, no. 1, pp. 29–35, 2004.
20.L. K. Ju, L. Huang, and H. Trivedi, “Simultaneous nitrification and denitrification through low–DO operation,” Water Environment Foundation, vol. 15, pp. 1583–1597, 2006.
21.H. Gullicks, H. Hasan, D. Das, C. Moretti, and Y. T Hung, “Biofilm fixed film systems,” Water, vol. 3, no. 3, pp. 843–868, Sep. 2011.
22.J. L. Barnard, “A review of biological phosphorus removal in the activated ludge process,” Water South African, vol. 2, no. 3, pp. 136-144, 1976.
23.李中光、邱惠敏,「活性污泥法常見問題與對策」,環保簡訊,第24期,2014年。
24.R. Hreiz, M. A. Latifi, and N. Roche, “Optimal design and operation of activated sludge processes: State–of–the–art,” Chemical Engineering Journal, vol. 281, pp. 900–920, 2015.
25.A. M. Jenkins, and D. Sanders, Introduction to Fixed-Film Bio-Reactors for Decentralized Wastewater Treatment, Contech Engineered Solutions, pp. 1–7, Dec. 2012.
26.E. H. Eding, A. Kamstra, J. A. J. Verreth, E. A. Huisman, and A. Klapwijk, “Design and operation of nitrifying trickling filters in recirculating aquaculture: A review,” Aquacultural Engineering, vol. 34, no. 3, pp. 234–260, May. 2006.
27.O. I. Lekang, and H. Kleppe, “Efficiency of nitrification in trickling filters using different filter media,” Aquacultural Engineering, vol. 21, no. 3, pp. 181–199. Jan. 2000.
28.F. Hassard, J. Biddle, E. Cartmell, B. Jefferson, S. Tyrrel and T. Stephenson, “Rotating biological contactors for wastewater treatment–A review,” Process Safety and Environmental Protection, vol. 94, pp. 285–306, Mar. 2015.
29.S. Cortez, P. Teixeira, R. Oliveira, and M. Mota, “Rotating biological contactors: A review on main factors affecting performance,” Rev Environ Sci Biotechnol, vol. 7, no. 2, pp. 155–172, Jun. 2008.
30.P. Teixeira, and R. Oliveira, “Denitrification in a closed rotating biological contactor: effect of disk submergence,” Elsevier, vol. 37, pp. 345–349, 2001.
31.P. A. Kadu, and Y. R. M. Rao, “Rotating biological contactors: A critical review,” International Journal of Scientific & Engineering Research, vol. 3, no. 9, pp. 1–6, Sep. 2012.
32.內政部營建署,「建築物污水處理設施設計技術規範」,頁50-58,2009年。
33.H. H. Ngo, W. S. Guo, and W. Xing, “Evaluation of a novel sponge-submerged membrane bioreactor for sustainable water reclamation,” Bioresource Technology, vol. 99, pp. 2429–2435, May. 2008.
34.歐陽嶠暉,「生物接觸曝氣法」,經濟部工業局,1994年。
35.A. Bernhard, “The nitrogen cycle: processes, players, and human impact,” Nature Education Knowledge, vol. 3, no. 10, pp. 25, 2010.
36.S. P. Burghate, and N. W. Ingole, “Biological denitrification–A review,” Journal of Environmental Science, Computer Science and Engineering & Technology, vol. 3, no. 1, pp. 9–28, Feb. 2014.
37.P. Fang, Q. Wan, L. Yu, and D. Peng, “ Modeling and simulation of enhancing nitrification in wastewater treatment though bio-augment,” Remote Sensing Environment and Transportation Engineering , pp. 5080–5083, Jun. 2011.
38.S. Zhu, and S. Chen, “The impact of temperature on nitrification rate in fixed film biofilters,” Aquacultural Engineering, vol. 26, pp. 221–237, 2002.
39.S. Chen, J. Ling, and J. P. Blancheton, “Nitrification kinetics of biofilm as affected by water quality factors,” Aquacultural Engineering, vol. 34, no. 3, pp. 179–197, May. 2006.
40.W. G. Zumft, “The denitrifying prokaryotes,” The prokaryotes a handbook on the biology of bacteria: ecophysiology isolation identification applications, 2nd ed, H. G. Truper, M. Dworkin, W. Harder, K. H. Schleifer, (eds.), Springer-Verlag, New York, pp. 554–582, 1992.
41.W. J. Payne, “Reduction of Nitrogenous Oxides by Microorganisms,” Bacteriol Rev, vol. 37, no. 4, pp. 409–452, Dec. 1973.
42.T. C. Zhang, Y. C. Fu, P. L. Bishop, “Competition for substrate and space in biofilms,” Water Environ, vol. 67, pp. 992–1003, 1995.
43.H. Kowner, and W. G. Zumft, “Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory Substrate in Continuous Culture of Pseudomonas stutzeri,” Applied and Environmental Microbiology, vol. 55, no. 7, pp. 1670–1676, Jul. 1989.
44.L. Kuai, and W. Verstraete, “Ammonium removal by the oxygen–limited autotrophic nitrification-denitrification system,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4500–4506, Nov. 1998.
45.A. Mulder, A. A. van de Graaf, L. A. Robertson, and J. G. Kuenen, “Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor,” Federation of European Microbiological Societies Microbiology Ecology, vol. 16, no. 3, pp. 177–183, 1995.
46.B. Ma, S. Wang, S. Cao, Y. Miao, F. Jia, R. Du, and Y. Peng, “Biological nitrogen removal from sewage via anammox: Recent advances,” Bioresource Technology, vol. 200, pp. 981–990, Jan. 2016.
47.C. C. Wang, P. H. Lee, M. Kumar, Y. T. Huang, S. W. J. Sung, and G. Lin, “Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full–scale landfill–leachate treatment plant,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 622–628, Oct. 2010.
48.M. Strous, E. Van. Gerven, J. G. Kuenen, and M. Jetten, “Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge,” Appl Environ Microbiol, vol. 63, no. 6, pp. 2446–2448, Jun. 1997.
49.J. Dosta, I. Fernández, J. R. Vázquez-Padín, A. Mosquera-Corral, J. L. Campos, J. Mata-Álvarez, and R. Méndez, “Short–and long–term effects of temperature on the Anammox process,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 688–693, Jun. 2008.
50.C. Fux, M. Boehler, P. Huber, I. Brunner and H. Siegrist, “Biological treatment of ammonium–rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (Anammox) in a pilot plant,” Journal of Biotechnology, vol. 99, no. 3, pp. 295–306, Nov. 2002.
51.J. P. Voets, H. Vanstaen, and W. Verstraete, “Removal of nitrogen from highly nitrogenous wastewaters,” Water Pollution Control Fed, vol. 47, no. 2, pp. 394–398, 1975.
52.C. Hellinga, A. A. J. C. Schellen, J. W. Mulder, M. C. M. van Loosdrecht, and J. J. Heijnen, “The sharon process: An innovative method for nitrogen removal from ammonium–rich wastewater,” Water Science and Technology, vol. 37, no. 9, pp. 135–142, 1998.
53.J. Guo, Y. Peng, S. Wang, Y. Zheng, H. Huang, and Z. Wang, “Long–term effect of dissolved oxygen on partial nitrification performance and microbial community structure,” Bioresource Technology, vol. 100, no. 11, pp. 2796–2802, Jun. 2009.
54.D. Gao, Y. Peng, B. Li, and H. Liang, “Shortcut nitrification–denitrification by real–time control strategies,” Bioresource Technology, vol.100, no. 7, pp. 2298–2300, Apr. 2009.
55.Gergő Zajzon, “Simultaneous nitrification and denitrification process in the municipal wastewater treatment,” Proceedings of the Conference of Junior Researchers in Civil Engineering 2012, pp. 282–288, 2012.
56.H. Yoo, K. H. Ahn, H. J. Lee, K. H. Lee, Y. J. Kwak, and K. G. Song, “Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently–aertes reactor,” Water Research, vol. 33, no. 1, pp. 145–154, Jan. 1999.
57.H. Guo, J. Zhou, J. Su, and Z. Zhang, “Integration of nitrification and denitrification in airlift bioreactor,” Biochemical Engineering, vol. 23, no. 1, pp. 57–62, Mar. 2005.
58.P. Bliss, and D. Barnes, “Modelling nitrification in plant scale activated sludge,” Water Science Technology, vol. 18, no. 6, pp. 139–148, 1986.
59.K. Pochana, and J. Keller, “Study of factors affecting simultaneous nitrification and denitrification (SND),” Water Science and Technology, vol. 39, no. 6, pp. 61–68, 1999.
60.Y. J. Chang, and S. K Tseng, “A novel double-membrane system for simultaneous nitrification and denitrification in a single tank,” Letters in Applied Microbiology, vol. 28, no. 6, pp. 453–456, Jun. 1999.
61.S. Rishell, E. Casey, B. Glennon, and G. Hamer, “Characteristics of a methanotrophic culture in a membrane-aerated biofilm reactor,” Biotechnol Prog, vol. 20, pp. 1082–1090, 2004.
62.W. Guo, H. H. Ngo, F. Dharmawan, and C. G. Palmer, “Roles of polyurethane foam in aerobic moving and fixed bed bioreactors,” Bioresource Technology, vol. 101, no. 5, pp. 1435–1439, 2010.
63.Q. Feng, Y. Wang, T. Wang, H. Zheng, L. Chu, C. Zhang, H. Chen, X. Kong, and X. Xing, “Effects of packing rates of cubic–shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors,” Bioresource Technology, vol. 117, pp. 201–207, Aug. 2012.
64.S.M. Borghei, M. Sharbatmaleki, P. Pourrezaie, and G. Borghei, “Kinetics of organic removal in fixed–bed aerobic biological reactor,” Bioresource Technology, vol. 99, no. 5, pp. 1118–1124, Mar. 2008.
65.D. J. Gapes, and J. Keller, “Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms,” Process Biochemistry, vol. 44, no. 1, pp. 43–53, Jan. 2009.
66.H. A. Hasan, S. R. S. Abdullah, S. K. Kamarudin, and N. T. Kofli, “A review on the design criteria of biological aerated filter for COD, Ammonia and manganese removal in drinking water treatment,” Journal - The Institution of Engineers, Malaysia, vol. 70, no. 4, pp. 25–33, 2009.
67.T. D. Kent, C. S. B. Fitzpatrick, and S. C. Williams, “Testing of biological aerated filter media,” Water Science and Technology, vol. 34, no. 3–4, pp. 363–370, 1996.
68.B. Hodkinson, J. B. Williams, and J. E. Butler, “Development of biological aerated filter: A review,” Journal of Chartered Institution Water Environmental Management, vol. 13, no. 4, pp. 250–254, 1999.
69.B. K. Pramanik, S. Fatihah, Z. Shahrom, and E. Ahmed, “Biological aerated filters (BAFs) for carbon and nitrogen removal: A review,” Journal of Engineering Science and Technology, Vol. 7, No. 4, pp. 428–446, 2012.
70.A. Aizpuru, N. Khammar, L. Malhautier, and J. Fanlo, “Biofiltration for the treatment of complex mixtures of VOC Influence of the packing material,” Acta Biotechnologica, vol. 23, no. 2–3, pp. 211–226, Aug. 2003.
71.Z. Shen, Y. Zhou, J. Hu, and J. Wang, “Denitrification performance and microbial diversity in a packed–bed bioreactor using biodegradable polymer as carbon source and biofilm support,” Journal of Hazardous Materials, vol. 250–251, no. 15, pp. 431–438, Apr. 2013.
72.J. H. Tay, P. C. Chui, and H. Li, “Influence of COD: N: P ratio on nitrogen and phosphorus removal in fixed–bed filter,” Journal of Environmental Engineering, vol. 129, no. 4, pp. 285–290, Apr. 2003.
73.Y. Z. Liu, T. O. Yang, D. X. Yuan, and X. Y. Wu, “Study of municipal wastewater treatment with oyster shell as biological aerated filter medium,” Biochemical Engineering, vol. 254, no 1–3, pp. 149–153, 2010.
74.林彥志,不同接觸曝氣濾材處理養豬廢水之同槽硝化脫硝效率。國立台南大學碩士論文,2011年。
75.L. Qiu, S. Zhang, G. Wang, and M. Du, “Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media,” Bioresource Technology, vol. 101, no. 19, pp. 7245–7251, Oct. 2010.
76.H. Deguchi, and M. Kashiwaya, “Study on nitrified liquor recycling process operations using polyurethane foam sponge cubes as a biomass support medium,” Water Science and Technology, vol. 30, no. 6, pp. 143–149, 1994.
77.J. J. Goncalves, and R. Govind, “Enhanced biofilm attachment onto polyurethane foam, packed-bed biotrickling filters for the treatment of odours,” Environmental Division 2006 Annual Meeting, 497b, 2006.
78.T. T. Nguyen, H. H. Ngo, W. Guo, S. Phuntsho, and J. Li, “A new sponge tray bioreactor in primary treated sewage effluent treatment,” Bioresource Technology, vol. 102, no. 9, pp. 5444–5447, May. 2011.
79.L. M. C. Daniel, E. Pozzi, E. Foresti, and F. A. Chinalia, “Removal of ammonium via simultaneous nitrification–denitrification nitrite-shortcut in a single packed–bed batch reactor,” Bioresource Technology, vol. 100, no. 3, pp. 1100–1107, Feb. 2009.
80.H. P. Chuang, A. Ohashi, H. Imachi, M. Tandukar, and H. Harada, “Effective partial nitrification to nitrite by down–flow hanging sponge reactor under limited oxygen condition,” Water Research, vol. 41, no. 2, pp. 295–302, Jan. 2007.
81.J. A. Sánchez Guillén, P. R. Cuéllar Guardado, C. M. Lopez Vazquez, L. M. de Oliveira Cruz, D. Brdjanovic, and J. B. van Lier, “Anammox cultivation in a closed sponge–bed trickling filter,” Bioresource Technology, vol. 186, pp. 252–260, Jun. 2015.
82.J. W. Lim, C. E. Seng, P. E. Lim, S. L. Ng, and A. N. A. Sujari, “Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials,” Bioresource Technology, vol. 102, pp. 9876–9883, 2011.
83.C. Tan, F. Ma, A. Li, S. Qiu, and J. Li, “Evaluating the effect of dissolved oxygen on simultaneous nitrification and denitrification in polyurethane foam contact oxidation reactors,” Water Environment Research, vol. 85, no. 3, pp. 195–202, Mar. 2013.
84.L. Chu, and J. Wang, “Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio,” Chemosphere, vol. 83, no. 1, pp. 63–68, Mar. 2011.
85.S. H. Zhang, J. H. Chen, and Z. G. Sun, “Mechanism and affecting factors of simultaneous nitrification and denitrification in water deep treating using biological aerated filter (BAF) ,” Journal of Donghua University (Natural Science), vol. 33, no. 1, pp. 125–129, 2007.
86.I. A. Vasiliadou, K. A. Karanasios, S. Pavlou, and D. V. Vayenas, “Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed–bed reactors,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 812–824, Jun. 2009.
87.T.T. Nguyen, H. H. Ngo, W. Guo, A. Johnston, and A. Listowski, “Effects of sponge size and type on the performance of an up–flow sponge bioreactor in primary treated sewage effluent treatment,” Bioresource Technology, vol. 101, no. 5, pp.1416–1420, Mar. 2010.
88.W. Guo, H. H. Ngo, C.G. Palmer, W. Xing, A. Y. Hu, and A. Listowski, “Roles of sponge sizes and membrane types in a single stage sponge–submerged membrane bioreactor for improving nutrient removal from wastewater for reuse,” Desalination, vol. 249, no. 2, pp. 672–676, Dec. 2009.
89.R. Qi, K. Yang, and Z. X. Yu, “Treatment of coke plant wastewater by SND fixed biofilm hybrid system,” Journal of Environmental Sciences, vol. 19, pp. 153–159, 2007.
90.G. Bertanza, “Simultaneous nitrification-denitrification process in extended aeration plants: Pilot and real scale experiences,” Water Science and Technology, vol. 35, no. 6, pp. 53–61, 1997.
91.E. Clifford, P. Forde, S. McNamara, M. Rodgers, and E. O’Reilly, “Performance of air suction flow biofilm reactor in treating municipal-strength wastewater,” Journal of Environmental Engineering, vol. 139, pp. 864–872, Jun. 2013.
92.M. Makowska, M. Spychała, and R. Mazur, Removal of carbon and nitrogen compounds in hybrid bioreactors, Biomass Now–Cultivation and Utilization, Miodrag Darko Matovic, DOI: 10.5772/53582, Apr. 2013.
93.S. G. Won, D. Y. Jeon, J. H. Kwag, J. D. Kim, and C. S. Ra, “Nitrogen removal from milking center wastewater via simultaneous nitrification and denitrification using a biofilm filtration reactor,” Asian-Australasian Journal of Animal Sciences, vol. 28, no. 6, pp. 896–902, Jun. 2015.
94.L. Gonga, L. Junb, Q. Yanga, S. Wanga, B. Maa, and Y. Penga, “Biomass characteristics and simultaneous nitrification–denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage,” Bioresource Technology, vol. 119, pp. 277–284, Sep. 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top