|
[1] 王晉中(2010),「Matlab 7在工程上的應用」,台北:高立圖書有限公司。 [2] 莊克士(2006),「醫學影像物理學」,台北:合記圖書出版社。 [3] 鄭慶明(2006),「醫學影像診斷學」,台北:合記圖書出版社。 [4] 張簡復(2010),「數位影像處理使用Matlab 7.X」,台北:松崗管理股份有限公司。 [5] Lin, R.H(2009), An intelligent Model for Liver Disease Diagnosis, Artificial Intelligence in Medicine, 47, pp. 53-62. [6] Esneault, S., Lafon, C., and Dillenseger, J.L(2010), Liver Vessels Segmentation Using a Hybrid Geometrical Moments / Graph Cuts Method, IEEE Transactions on Biomedical Engineering, 57(2), pp.276-283. [7] Campadelli, P., Casiraghia, E., and Espositob, A(2009), Liver Segmentation from Computed Tomography Scans:a Survey and a New Algorithm, Artificial Intelligence in Medicine, 45, pp.185-196. [8] Poyanli, A(1999), Computed Tomography Scan of the Liver, European Journal of Radiology, 32, pp.15-20. [9] Schwenzer, N.F., Springer, F., Schraml, C., Stefan, N., Machann, J., and Chick, F(2009), Non-invasive Assessment and Quantification of Liver Steatosis by Ultrasound, Computed Tomography and Magnetic Resonance, Journal of Hepatology, 51(3), pp.433-445. [10] Chen, E.L., Tsai, H.M., and Chang, C.I(1998), An Automatic Diagnostic System for CT Liver Image Classification, IEEE Transactions on Biomedical Engineering, 45(6), pp.783-794. [11]Mougiakakou, S., and Alexandra, K.I(2007), Differential Diagnosis of CT Focal Liver Lesions Using Texture Features, Feature Selection and Ensemble Driven Classifiers, Artificial Intelligence in Medicine, 41, pp. 25-37. [12]Haralick, R.M., and Shanmugam, K(1973), Textural Features for Image Classification, IEEE Transactions on Medical Imaging, 3, pp.610-621. [13]Haralick, R.M(1979), Statistical and Structural Approaches to Texture, IEEE Transactions on Medical Imaging, 67, pp. 786-806. [14]Daniel, J. “Texture Analysis of Human Liver(2002), Journal of Magnetic Resonance Imaging, 68, pp.68-74. [15]Svoles, A.E., and Todd, P.A(1998), Time and Space Results of Dynamic Texture Feature Extraction in MR and CT Image Analysis, IEEE Transactions on Information Technology in Biomedicine, 21(2), pp.48-54. [16]Chen, K.L(1995), Quantitative Characterization of Electron Micrograph Image Using Fractal Feature, IEEE Transaction on Information in Biomedicine, 42, pp.1033-1037. [17]Lee, C.C., and Shih, C.Y. Classification of Liver Disease from CT Images Using Sigmoid Radial Basis – Function Neural Network(2009), World Congress on Computer Science and Information Engineering, 24, pp. 656-660. [18]Wu, C.M., Chen, Y.C., and Hsieh, K.S(1992), Texture Features for Classification in Ultrasonic Liver Images, IEEE Transaction on Information Technology in Biomedicine, 11, pp.141-152. [19]Pauls, S., Andreas, G., Wolfgang, H., Eckhart, F., Sandra, P., and Stefan, A.S(2009), Liver Perfusion with Dynamic Multidetector-Row Computed Tomography as an Objective Method to Evaluate the Efficacy of Chemotherapy in Patients with Colorectal Cancer, 33, pp.289-294. [20]Celebi, M.E., Kingravia, H.A., Uddina, B., and Lyatomid, H(2000), A Methodological Approach to the classification of Dermoscopy Images, Computerized Medical Imaging and Medical Imaging and Graphics, 31, pp.362-373. [21]Lixu, G., Chen, G., Qian, L., and Xu, J(2009), An Improved Level Set for Liver Segmentation and Perfusion Analysis in MRIs, IEEE Transactions on Information Technology in Biomedicine, 13(1), pp.94-103. [22]Xu, C., and Prince, J.L(2004) Snakes, Shapes, and Gradient Vector Flow, IEEE Transactions on Image Processing, 7(3), pp.94-106. [23]Van, B.G., Heimann, T., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A., Cashman, P., Ying, C., Cordova, A., Dawant, B.M., Fidrich, M., and Furst, J.D(2009), Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets, IEEE Transactions on Medical Imaging, 28(8), pp.1251-1265. [24]Wen, L.W., and Hsiehb, K.S(2010), A Robust Algorithm for the Fractal Dimension of Images and its Applications to the Classification of Natural Images and Ultrasonic Liver Images, Signal Processing, 90, pp. 1897-1904. [25]Mougiakakou, M.G., Gletsos, M., Matsopoulos, G.K., Nikita, K.S., Nikita, A.S., and Kelekis, D(2003), A Computer – Aided Diagnostic System to Characterize CT Focal Liver Lesions: Design and Optimization of a Neural Network Classifier, IEEE Transaction on Information Technology in Biomedical, 7(3), pp.153-162. [26]Yu, L., and Liu, H(2005), Toward Integrating Feature Selection Algorithm for Classification and Clustering, IEEE Transaction on Information Technology in Biomedicine, 17(4), pp.491-502. [27]Liu, J., and Iba, H(2001), Selecting Informative Genes with Parallel Genetic Algorithms in Tissue Classification, Genorm Information, 12, pp.14-23. [28]Chung, S.H., and Ho, S.B(2008), Classification of Liver Diseases MRI Images Using First-Order Statistics – Grid Computing Approach, IEEE Transaction of information Technology in Biomedicine, 5, pp.25-27. [29]Ludwig, O., and Nunes, U(2008), Novel Maximum - Margin Training Algorithms for Supervised Neural Networks, IEEE Transactions on Neural Networks, 6, pp.972-984. [30]Silveira, M., and Marques, J.(2006), Automatic Segmentaion of the lungs using Multiple Active Contours and Outlier Model, IEEE Transaction on Information Technology in Biomedicine, 28, pp.63-69. [31]Celebi, M.E., Kingravi, H., Uddin, B., Iyatomi, H., Aslandogan, Y.A., Stoecker, W.V., and Moss, R.H(2007), A Methodological Approach to the Classification of Dermoscopy Images, Computer Medical Imaging and Graphics, 31, pp.362-373. [32]Fung, G.M., and Mangasarian, O.L(2004), A Feature Selection Newton Method for Support Vector Machine Classification, Computational and Applications, 28, pp.185-202. [33]Rief, M., Wagner, M., Franiel, T., Bresan, V., Taupitz, M., Klessen, C., Hamm, B., and Asbach, P(2009) Detection of Focal Liver Lesions in Unenhanced and Ferucarbotran-Enhanced Magnetic Resonance Imaging:A comparison of T2-Weighted Breath-Hold and Respiratory-Triggered Sequences, Science Direct, 27, pp.1223-1229.
|