跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/29 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:寇柏年
研究生(外文):Po-Nien Kou
論文名稱:PEDOT與PEDOT/ZnO薄膜研製、導電特性、形態與酸鹼緩衝性質之研究
論文名稱(外文):Research of PEDOT and PEDOT/ZnO Film Prepared, Conductivity, Morphology and pH Buffering
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:PEDOTPTAAPVPZnO 長晶pH 緩衝高溫快速成膜法
外文關鍵詞:PEDOTPTAAPVPZnOpH tuningIn situ polymerization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究分為三個部分,第一部分利用高溫快速成膜法製備PEDOT導電薄膜,討論添加PTAA與PVP對導電度及透明性的影響。第二部分比較不同之ZnO晶種及長晶濃度,討論其對PEDOT以及PEDOT-PTAA薄膜上成長ZnO奈米柱之晶型影響。第三部分則是利用前兩部分所得到之高分子薄膜與薄膜上生成ZnO晶柱後進行pH緩衝效果的測試。
第一部分我們利用高溫快速成膜法製備PEDOT導電薄膜,討論不同比例之PTAA或PVP的混合及不同塗佈次數所造成的影響,並利用FT-IR、UV-vis等儀器鑑定其成分,同時觀察不同比例配方下之導電度與透明度差異。研究發現PEDOT摻混PVP後,利用兩次塗佈的方式能夠獲得透明度以及導電度最好的成品,其導電度約100 S/cm,透明度可85%。第二部分中我們於薄膜上以晶種利用水熱法成長ZnO奈米柱,討論不同薄膜與不同ZnO溶液濃度下,ZnO晶柱的差異。其中,含有PTAA之PEDOT-PTAA薄膜在成長ZnO晶體後能獲得比PEDOT薄膜長晶有較大的ZnO長徑比,當長晶濃度控制在0.01 M左右,可獲得較為細長且緻密之ZnO奈米線。在第三部分進行薄膜的pH 緩衝測試,結果發現PEDOT 與PEDOT-PTAA薄膜對於弱鹼性有緩衝效果,而加入ZnO晶柱PEDOT/ZnO與PEDOT-PTAA/ZnO複合薄膜除了在弱鹼性有緩衝能力外,對於弱酸性也有不錯的調控能力。

This study was divided into three parts. First, PEDOT conductive film was prepared by the method of “In situ oxidative polymerization.” PTAA or PVP was introduced to discuss the effects on conductivity and transmittance. Second, various concentrations of ZnO seeds were adopted to synthesize ZnO on the PEDOT or PEDOT-PTAA film, and the influence on morphology and crystalline were also conducted. Third, PEDOT or PEDOT-PTAA film and PEDOT/ZnO or PEDOT-PTAA/ZnO composite film were used as pH buffering materials to undergo the pH tuning test.
In the first part, PEDOT conductive film was prepared by the method of “In situ oxidative polymerization.” The different coating times and amounts of PTAA or PVP mixing with were investigated to compare the conductivity and transmittance. We found that PEDOT mixing with PVP in two-times spin-coating process could reach the best conductivity (~100 S/cm) and transmittance (>85 %). In the second part, ZnO with different concentrations were synthesized on the PEDOT and PEDOT/PTAA film by “Hydrothermal growth method.” The result showed that the growth of ZnO rod on PEDOT-PTAA film would achieve the highest aspect ratio. In addition, 0.01 M ZnO solution was the best recipe to attain thin and dense ZnO nanowire. In the final part, PEDOT and PEDOT-PTAA film could adjust pH tuning test only weak base to neutral (pH=9 to pH=7). However, ZnO composite film had the ability to tune both weak base and weak acid to neutral. Consequently, the PEDOT/ZnO and PEDOT-PTAA/ZnO composite film were working on pH tuning test.

口試委員審定書…………………………………………………………………………I
誌謝………………………………………………………………………………………II
摘 要 .............................................................................................................................. II
Abstract ........................................................................................................................... IV
目 錄 .............................................................................................................................. V
表目錄 ........................................................................................................................... VII
圖目錄 .......................................................................................................................... VIII
第一章 緒論 .................................................................................................................... 1
第二章 文獻回顧 ............................................................................................................ 3
2-1 奈米材料 ........................................................................................................... 3
2-2 薄膜材料 ........................................................................................................... 4
2-3 導電高分子 ....................................................................................................... 8
2-4 氧化鋅 ............................................................................................................. 14
2-5 螯合型高分子 ................................................................................................. 19
第三章 實驗方法 ........................................................................................................ 22
3-1 實驗藥品 ......................................................................................................... 22
3-2 實驗儀器 ......................................................................................................... 24
3-3 實驗流程 ......................................................................................................... 28
3-4 實驗方法 ......................................................................................................... 32
3-5 性質測定 ......................................................................................................... 36
第四章 結果與討論 ...................................................................................................... 39
4-1 聚合PEDOT-PTAA Film................................................................................ 39
4-2 合成PEDOT-PTAA / ZnO 複合薄膜 ............................................................. 44
4-3 pH 緩衝之結果與討論 .................................................................................... 48
第五章 結論 .................................................................................................................. 50
參考文獻 ........................................................................................................................ 52

1. 吳文演,奈米材料與技術在紡織產業上之應用,台灣科技大學。
2. R. P. Feynman, American Phys. Soc.. 1959.
3. 王建義,薄膜工程學. 2004.
4. Mulder, M., Basic Principles of Membrane Technology. Kluwer Academic. 2nd ed. 1996.
5. 李正中,漫談光學薄膜技術,光電科技雜誌. 2005.
6. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, and A. J. Heeger,H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098–1101.
7. S. Lefrant, L. S. Lichtman, M. Temkin, D. C. Fichten, D. C. Miller, G. E. Whitwell and J. M. Burlich, Solid State Commun., 1979, 29, 191.
8. G. B. Street, T. C. Clarke, R. H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J. C.Scott, J. Phys. (Paris), 1983, C3, 599.
9. T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymers, 2nd ed., 1998, Marcel Dekker, New York.
10. H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, vol. 1-4, 1997, Wiley, Chichester, England.
11. P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, 1995, VSH, Weinheim, Germany.
12. K. K. Kanazawa, A. F. Diaz, M. T. Krounbi and G.. B. Street, Synth. Met., 1981, 4, 119.
13. A. F. Diaz and J. A. Logan, J. Electroanal. Chem., 1980, 111, 111.
14. G. Tourillon and F. Garnier, J. Electroanal Chem., 1982, 135, 173.
15. T. P. McAndrew, TRIP., 1997, 5, 7.
16. Fichou, D. Handbook of Oligo- and Polythiophenes, 1999, Wiley-VCH, Weinheim.
17. Tracht, U.;Kirchmeyer, S. 5th International Symposium on Functional pi-Electron System, 2002, Ulm, Germany.
18. Leeuw, D. M. d.; Kraakman, P.A.;Bongaerts, P.F.G.; Muysaers, C.M.J.; Klaassen, D.B.M., Syn. Met., 1994, 66, 263.
19. AG, B. US Patent 5 792 558, 1996.
20. F. Jonas, G. Heywang, W. Schmidtberg, J. Heinze, and M. Dietrich, U.S. Patent, 5,035,926, 1991.
21. F. Jonas and L. Schrader, Synth. Met., 1991, 831, 41-43.
22. G. Heywang and F. Jonas, Adv. Mater., 1992, 116, 4.
23. J. C. Carlberg and O. Inganas, J. Electrochem. Soc., 1997, L61, 144.
24. M. Granstrom, M. Berggren, and O. Inganas, Science, 1995, 267, 1479.
25. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, Synth. Met., 2000, 139, 111.
26. Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, Syn. Met., 2002, 185, 131.
27. Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, Electrom. Commun., 2004, 71, 6.
28. Hupe, J.; Wolf, G. D.; Jonas, F. Galvanotechnik 1995, 86, (10), 3404
29. H. W. Heuer, R. Wehrmann, and S. Kirchmeyer, Adv. Func. Mater., 2002, 89, 12.
30. H. W. Heuer and R. Wehrmann, U.S. Patent, 6,403,741, 2002.
31. H. W. Heuer and R. Wehrmann, U.S. Patent, 9,452,711, 2002.
32. Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang,and L. S. Wen, J. Appl. Phys., 2001, 90, 3432-3436.
33. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys., 2004, 95, 1911-1917.
34. R.S. Wanger, W. C. Ellis, Appl.Phys. Lett., 1964, 4, 89.
35. X. F. Duan, C. M. Lieber, Adv. Mater., 2000, 12, 298.54
36. X.F. Duan, C. M. Lieber, J. Am. Chem. Soc., 2000, 122, 188.
37. H. J. Fan, R. Scholz, F. M. Kolb, M. Zacharias, Appl. Phys. Lett., 2004, 85, 4142.
38. G. W. Sears, Acta. Met., 1955, 4 361.
39. W. I. Park, D. H. Kim, S.-W. Jung, Gyu-Chul Yi, Appl. Phys. Lett., 2002, 80, 4232.
40. C. C. Chen, C. C. Yeh, Adv. Mater., 2000, 12, 738.
41. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, Chem. Phys. Lett., 1999, 303, 311.
42. Y. Wu, P. Yang, Chem. Mater., 2000, 12, 605.
43. Tokumoto, M. S.; Pulcinelli, S. H.; Santilli, C. V.; Briois, V. Phys. Chem. B, 2003, 107, (2), 568-574.
44. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 2001, 291, 5510, 1947.
45. Lu, C. H.; Yeh, C. H., Ceram. Inter., 2000, 26, 351-357.
46. Noshir, P. S.; Kathleen, S. J.; Peter, S. C., Phys. Chem. B, 2003, 107, (38), 10412-10415.
47. Guo, M.; Diao, P.; Cai, S. Appli. Surf. Sci., 2005, 249, 71-75.
48. Yi, S. H.; Choi, S. K.; Jang, J. M.; Kim, J. A.; Jung, W. G., Coll.and Interf. Sci., 2007, 313, 705-710.
49. Lu, C. H.; Hwang, W. J.; Godbole, S. V., Mate. Resea. Soc., 2005, 20, (2), 464-471.
50. Lepot, N.; Bael, M. K. V.; Rul, H. V. D.; D''Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Mate. Lett., 2007, 61, 2624-2627.
51. R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533.
52. F. Ciardelli, E. Tsuchida, D. Wohrle, Berline: Springer, 1996.
53. Gregor, Ind. Eng. Chem., 1952, 44, 2834.
54. J. Bartulin, H. Zunza, M. L. Parra and B. L. Rivas, Poly. Bulle., 1986, 16, 293.
55. C. C. Wang, C. Y. Chen, C. C. Huang, C. Y. Chen and J. F. Kuo, J. Membr.Sci., 2000, 177.
56. K. A. K. Ebraheem, S. T. Hamdi, React. & Funct. Polym., 1997, 34, 5.
57. A. Denizli, G. Ozkan, M.Y. Arica, J. Appl. Polym. Sci., 2000, 78, 81.
58. C. Y. Chen and C Y. Chen, J. of Appli. Poly. Sci., 2002, 86, 1986.
59. Ha, Y.-H.; Nikolov, N.; Pollack, S. K.; Mastrangelo, J.; Martin, B. D.; Shashidhar, R., Adv. Func. Mate., 2004, 14, (6), 615-622.
60. Kyung, H. H.; Kyung, W. O.; Tae, J. K., Appl. Poly. Sci., 2005, 97, 1326-1332.
61. Jang, J.; Chang, M.; Yoon, H., Adv. Mater., 2005, 17, 1616-1620.
62. S. Vaddiraju, K. K. Gleason, Nanotechnology, 2010, 21, 125503.
63. J. H. Chen, C. A. Dai, W. Y. Chiu, J. Poly. Sci. A., 2008, 46, 1662-1673.
64. 謝閔琪,具 pH 緩衝之導電功能性PEDOT/ZnO 奈米複合薄膜之合成及性質研究,台大化工碩士論文,2008。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top