跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:史德智
研究生(外文):Der-Chi Shye
論文名稱:低溫製程技術應用於動態隨機存取記憶體之鈦酸鍶鋇薄膜電容器之研究
論文名稱(外文):Low-Temperature Processing Techniques Applied on Barium Strontium Titanate Films for the Applications of DRAM Storage Capacitors
指導教授:邱碧秀
指導教授(外文):Bi-Shiou Chiou
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:222
中文關鍵詞:鈦酸鍶鋇  高介電常數低溫技術雷射退火溫度電容係數
外文關鍵詞:(BaSr) TiO3high dielectric constantlow temperature technologyexcimer laser annealingtemperature coefficient of capacitance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文將研究以先進低溫製程技術製備之鈦酸鍶鋇( (Ba, Sr)TiO3, BST) 薄膜電容器之特性。本研究中,Pt/TiN/Ti/Si 基板被應用於所有的樣本上,用以模擬動態隨機存取記憶體 (DRAM) 之capacitor over bit-line (COB) 結構。
本實驗使用雙靶射頻磁控濺鍍系統在低基板溫度下 (<450oC)來成長鈦酸鍶鋇(BST)薄膜電容器。環境氣體壓力、濺鍍鎗功率和氧氣/氬氣混合比 (O2/(Ar+O2) mixing ratio, OMR)為此鈦酸鍶鋇薄膜製備過程之主要參數。電氣特性與材料特性分析顯示濺鍍環境氣氛之氧氣/氬氣混合比 (O2/(Ar+O2) mixing ratio, OMR)扮演最重要的角色。電漿光譜顯示BST薄膜之成長速度和品質將被OMR之值所嚴重影響,而在5% OMR 之下可以得到薄膜之最高介電常數值。較高之OMR可提升時間相對之介電崩潰限度(TDDB),換言之、即BST薄膜之可靠度因為薄膜中氧空缺補償之故而大幅提升。此外導電電流分析顯示在高電場下Pt/BST/Pt薄膜之導電機制將被Poole-Frenkel emission (PF) 所主導, 而低電場下則為蕭特基發射(Schottky emission, SE) 所主導,當OMR增加時蕭特基發射之機制影響亦增加。在本文中將以能帶圖來分析探討此導電電流機制。
BST薄膜於極低溫沉積完成後,低溫後處理將被應用於改善薄膜之品質。應用248nm波長之KrF準分子雷射(ELA) 於低基板溫度300oC下對此薄膜進行熱處理,以強化此膜之結晶性與電介質特性。實驗結果顯示結晶特性及電介特性將被顯著地強化。光學及熱傳分析顯示BST薄膜對248nm波長之準分子雷射之光吸收深度只有20nm,因此下層電極和元件將不會被此製程所損傷。雖然準分子雷射能於BST陶瓷薄膜之上表面進行快速有效的”淺層加熱”,但卻也容易破壞薄膜表面、形成大量之氧空缺,因之漏電流也隨之上升。此外、薄膜之優選晶向也會被雷射熱處理所影響,卽處理完後由 (mm0) 轉變成 (m00) 與 (mmm),此將影響薄膜之光學與高頻電性。製程參數中, 入射能量、薄膜厚度, 基板組成結構和溫度都會明顯地影響此雷射熱處理之效能。
在氬離子環境中濺鍍與ELA處理所造成之BST表面氧空缺損傷會引起高的漏電流。本實驗使用氧氧離子電漿 (oxygen plasma) 後處理來改善此現象。氧離子電漿後處理可有效地鈍化與補償薄膜表面之氧空缺以降低漏電流,並提高薄膜之可靠度。但電漿處理時間過長將會引起電漿損傷,所以時間與入射能量等參數必須被謹慎地控制。
此外、超薄奈米尺度之鉻金屬夾層被應用於鈦酸鍶鋇薄膜電容器上,形成BST/nano-scaled Cr/BST之三明治夾層事之結構。此三明治夾層結構可以大幅降低漏電流與增強電容與色散特性之熱穩定性,這些有趣的特性將十分有助於實際DRAM電容器之元件整合與應用規範需求。實驗結果顯示漏電流與熱穩定性與鉻金屬夾層之厚度呈相依函數之關係,且2nm厚度之鉻金屬夾層可得最低漏電流。此外,在不同操作溫度下(室溫到150oC)的溫度電容係數(Temperature coefficient of capacitance, TCC)由單層BST電容400nm之35%降至BST(200nm)/Cr(2nm)/BST(200nm) 三明治複合多層電容之5%以下。微觀分析指出非理想介面之散射行為、異常空間電荷場形成與金屬氧化物串接電容為此低電流與熱穩定性之形成機制。
透過低溫製程技術之整合,鈦酸鍶鋇(BST)薄膜電容元件將可成為Giga-bit世代DRAM電容器之最佳候選元件。本文中將綜合結論鈦酸鍶鋇薄膜電容器之最佳特性可由製程參數控制、後處理方法應用與特殊多層膜結構之整合而得到完全低溫低熱預算之製程技術。
The characteristics of (Ba, Sr)TiO3 thin films, prepared by novel techniques of low temperature treatments, were systematically studied in this thesis. Pt/TiN/Ti/Si substrates were applied on each sample to simulate the real capacitor over bit-line (COB) structure of dynamic random access memory (DRAM).
(Ba, Sr)TiO3 (BST) films were sputtered by radio frequency (RF) magnetron system with dual targets at low substrate temperature, lower than 450oC (340oC at sample surface), and the effects of the process parameters were also investigated. The work pressure, the sputtering gun power and the gas-mixing ratio are the important parameters in the BST film deposition. Material analyses and electrical testing show that the low temperature BST films are significantly affected by those process parameters. The O2/(Ar+O2) mixing ratio (OMR) is a most critical parameter during BST film sputtering. Plasma emission spectra indicate that the deposition rate declines at a higher OMR due to oxide formation on the target surface. The dielectric constant of the BST films can reach a maximum of 364 at 5% OMR. The ten-year lifetime of the time-dependent dielectric breakdown (TDDB) implies that the reliability of the capacitor can be enhanced at a higher OMR due to the compensation of oxygen vacancies and smaller grain sizes. Current-voltage analysis indicates that the leakage current of the Pt/BST/Pt capacitor is limited by Schottky emission (SE)/Poole-Frenkel emission (PF) at a lower/higher applied field, accordingly. The applied field boundary between SE and PF shifts toward higher field as OMR increases. Moreover, an energy-band model was proposed and this leakage mechanism was also discussed.
Post low-temperature treatments were applied on the BST films to further improve their crystallinities and electrical properties. A novel process, KrF excimer laser annealing (ELA) at the wavelength of 248 nm, had been undertaken to implement BST films at a process temperature of 300o C to avoid the steep thermal gradient in thin films. The dielectric constant of the amorphous (α) BST film was remarkably enhanced from 80 to over 250 after ELA treatment. The optical testing and the heat conduction analyses indicate that the underlayer films and devices cannot be damaged during ELA treatment due to a very shallow light absorption depth (20 nm) of the BST film at the wavelength of 248-nm. Besides, the laser energy fluence and film thickness greatly influence the thermal conduction and the temperature distribution within the BST films. In the meanwhile, the as-deposited films revealed (mm0) preferred orientation, and, intriguingly, the preferred orientations changed into (m00) and (mmm) after ELA treatments. The optical and the high frequency properties may be affected by this preferred-orientation change. However, although the ELA can perform “shallow-depth annealing” for BST thin film, the degradation of upper surface is strongly influenced by the laser energy fluence. Hence, the leakage current will be significantly affected by the energy fluence of the laser.
The leakage current of the ferroelectric film increases after sputtering process and post ELA treatment, but post oxygen plasma treatment can effectively improve the BST film surface to suppress the leakage at low processing temperature of 250oC. According to the analysis results in this thesis, the oxygen plasma treatment can effectively passivate the oxygen vacancies of BST films, decreasing the leakage currents. The leakage current can be reduced as many as two orders of magnitude under proper control of plasma conditions. The characteristics of the dielectric reliability, TDDB, can be also improved by this treatment due to the compensation of the surface oxygen vacancies.
In addition, a nano-scaled chromium (Cr) layer is applied onto (Ba, Sr)TiO3 (BST) thin film capacitor as an inter-layer to enhance thermal stability of capacitance and suppress leakage current. Temperature coefficient of capacitance (TCC) using this BST/Cr/BST (200nm/2nm/200nm) multifilm can achieve 30% lower than that using BST mono-layer (400nm) film. Besides, the leakage current can be also greatly suppressed by applying this nano-scaled Cr layer onto BST thin film capacitor. TCC and leakage current behave as functions of Cr thickness, so the optimal properties can be obtained with the Cr thickness of 2nm. Microstructure analysis suggests that the interfacial continuity strongly influences the TCC and leakage property due to scattering centers and series capacitance formed at imperfect interface. The correlated mechanisms between electric and material properties are systematically investigated in this work.
BST thin film can be the most promising candidate for Giga-bit generation cell capacitor, because the low temperature processes can be compatible to the IC’s integration. In this thesis, the optimal properties of the BST films can be obtained by adjusting process parameter, applying post treatments and using thermal stabilization structures to achieve thorough low-temperature processes.
Abstract (in Chinese) i
Abstract (in English) iv
Acknowledgements viii
Contents 1
Table Lists 5
Figure Captions 7
Chapter 1 Introduction
1-1 Challenges of Advanced BST Cell Capacitors 1-1
1-1.1 BST capacitors applied on advanced DRAM cells 1-1
1-1.2 Challenges of BST capacitors integrated with CMOS IC processing 1-5
1-2 Motivation of this Thesis 1-7
1-3 Thesis Organization 1-10
Chapter 2 General Backgrounds and Literature Review
2-1 General Backgrounds of DRAM Cell 2-1
2-1.1 Overview on DRAM cells 2-1
2-1.2 Trends and challenges of DRAM 2-6
2-2 Basic Concepts of the High-k Perovskite Material 2-11
2-2.1 The material and electrical characteristics of perovskite ceramics 2-11
2-2.2 Applications of BST thin films for DRAM’s cell capacitor 2-23
2-2.3 Fabrication methods of perovskite thin films 2-25
2-3 Excimer Laser Annealing 2-27
2-3.1 General feature of Excimer Laser Annealing 2-27
2-3.2 Mechanisms of Excimer Lasr Annealing (ELA) 2-31
2-4 Process Integration of the BST Capacitor 2-33
Chapter 3 Experimental Overview
3-1 Experimental Procedure 3-1
3-2 Sample Preparations 3-6
3-2.1 BST film fabrications 3-6
3-2.2 Post treatments 3-8
3-3 Characteristics Analysis 3-9
3-3.1 Physical characterization techniques 3-9
3-3.2 Electrical characterization techniques 3-11
Chapter 4 BST Thin Films Prepared by RF Co-Sputtering Technique at Low Substrate Temperatures
4-1 BST/Pt/TiN/Ti/Si Multifilm Sputtered at Low Temperature 4-1
4-2 Experiments 4-3
4-3 Properties of BST Films Sputtered at Low temperature 4-6
4-3.1 Effects of process parameters during BST sputtering 4-6
4-3.2 Material and electrical analysis of sputtered BST thin films 4-10
4-3.3 Leakage current mechanisms 4-19
4-4 Summary 4-23
Chapter 5 Crystallinity and Dielectric Properties of BST Films Enhanced by Post Excimer Laser Annealing
5-1 Brief Concept of BST Films Post Treated by ELA 5-1
5-2 Experiments 5-2
5-3 Properties and Analysis of ELA BST Films 5-3
5-3.1 Optical absorptions and thermal conduction analysis of
ELA-BST films 5-3
5-3.2 Material and electrical characterizations of ELA BST films 5-10
5-3.3 Leakage current mechanisms 5-17
5-4 Summary 5-21
Chapter 6 Leakage Current Improved by Post Oxygen Plasma Treatment
6-1 6-1 Brief Concept of Oxygen Plasma Treatment 6-1
6-2 Experiments 6-2
6-3 Properties of BST Films Post Treated by Oxygen Plasma 6-4
6-3.1 Leakage current suppressed by oxygen plasma treatment 6-4
6-3.2 Material and electrical characterizations of BST films post treated
by oxygen plasma 6-6
6-4 Summary 6-10
Chapter 7 Thermal Stabilization Effects of Nano-scaled Cr Layer Integrated into BST Cell CapacitorsBST/ultra-thin-Cr/BST Multifilms
7-1 Nano-scaled Cr Layer used for Thermal Stabilization 7-1
7-2 Experiments 7-3
7-3 Thermal Stability and Leakage Current Improved by the Novel Structure
of BST/nano-scaled Cr/BST Multifilms 7-5
7-3.1 Electrical properties of the BST/ultra-thin-Cr/BST multifilms 7-5
7-3.2 Micro structure analysis 7-9
7-4 Summary 7-13
Chapter 8 Conclusions and Future Prospects
8-1 Conclusions 8-1
8-2 Future Prospects 8-4
References R-1
Appendix
A. The TCR Effects for the RTA Treated BST Thin Film Resistors A-1
B. The Characteristics of PLD-PSrT Films Prepared on LT-Substrates B-1
Vita
[1] R. H. Dennard, “Field effect transistor memory”, U. S. Patent 3, 387, 286, granted June 4, 1968
[2] Kinam Kim, “ Perspectives on giga-bit scaled DRAM technology generation”, Microelectronics Reliability, vol. 40, p.191, 2000.
[3] Betty Prince, “Semiconductor Memory”, 2nd edition, p. 262, John Wiley & Sons Ltd., Chichester England, 1997
[4] Kinam Kim, Chang-Gyu Hwang, and Jong Gil Lee, “DRAM Technology Perspective for Gigabit Era”, IEEE Transactions on Electron Devices, vol. 45(3), p. 598, March 1998.
[5] Kinam Kim and Moon-Young Jeong, “The COB stack DRAM cell at technology node below 100nm – scaling issues and directions”, IEEE Transactions on Semiconductor Manufacturing, vol. 15(2), p. 137, May 2002.
[6] J. Lee, C. Cho, J. Lee, M. Kim, J. Lee, S. Shin, D. Kwak, K. Koh, G. Jeong, H. Jeong, T. Chung and K. Kim, “Novel cell architecture for high performance of 512-Mb DRAM with 0.12 μm design rule”, Journal of the Korean Physical Society, vol. 41(4), p. 487, Oct. 2002.
[7] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li and C. J. Radens, “Challenges and future directions for the scaling of dynamic random access memory (DRAM)”, IBM, J. Res. & Dev. Vol. 46(2/3), p. 187, March/May 2002.
[8] “Memory technology requirements and potential solutions” International Technology Roadmap for Semiconductors 2003 (ITRS 2003), Process integration, devices and structures, p. 22, Hsinchu Taiwan, 2003.
[9] J. H. Lee, J. H. Lee, Y. S. Kim, H. S. Jung, N. I. Lee, H. K. Kang and K. P. Suh, “Prctical next generation solution for stand-alone and embedded DRAM capacitor”, 2002 Symposium on VLSI Tech. Digest of Tech. Papers, p. 114, 2002.
[10] David E. Kotecki, “High dielectric materials for DRAM capacitors”, Semiconductor International, vol. 19(12), p.109, Nov. 1996.
[11] S. Ezhilvalavan, T. Y. Tseng, “Progress in the development of (Ba,Sr)TiO3 (BST) thin films for gigabit era DRAMs”, Materials Chemistry and Physics, vol. 65, p. 227~248, 2000.
[12] T. Kuoiwa, Y. Tsunenine, T. Horikawa, T. Makita, J. Tanimura, N. Mikami, K. Sato, Jpn. J. Appl. Phys., vol. 33(9B) Part I, p. 5187, 1994.
[13] A. Qutzourhit, J. U. Trefny, T. Kito, B. Yarar, A. Naziripour, A. M. Hermann, Thin Solid Films, vol. 259, p. 218, 1995.
[14] C. C. Hwang, M. H. Juang, M. J. Lai, C. C. Jaing, J. S. Chen, S. Huang, H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on the Pt/BST/Pt capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Solid-St Electron., vol. 45, p.121~125, 2001.
[15] M. S. Tsai, S. C. Sun and T. Y. Tseng, “Effect of oxygen to argon ratio on properties of (Ba, Sr)TiO3 thin films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., vol. 82(7), p. 3482~3487 1997.
[16] M. S. Tsai and T. Y. Tseng, “Conduction mechanism and temperature dependent current-voltage in (Ba, Sr)TiO3 thin films”, J. Electrochem. Soc., vol. 145(8), p.2853, 1998.
[17] S. Maruno, T. Kuroiwa, N. Mikami and K. Sato, “Model of leakage characteristics of (Ba, Sr)TiO3 thin films” Applied Physics Letters, vol. 73(7), p.954, 1998.
[18] C. S. Hwang, B. T. Lee, C. S. Kang, J. W. Kim, K. H. Lee, H. J. Cho, W. D. KimS. I. Lee and Y. B. Roh, “A comparative study on the electrical conduction mechanisms of (Ba, Sr)TiO3 thin fims on Pt and IrO2 electrodes”, J. Appl. Phys., vol. 83(7), p. 3703, 1998.
[19] L. Goux, M. Gervais, F. Gervais, A. Catherinot, C. Champeaux and F. Sabary, “Characterization of pulsed laser deposited Ba0.6Sr0.4TiO3 on Pt-coated silicon substrates”, Materials Science in Semiconductor Processing, vol. 5, p.189, 2003.
[20] C. C. Hwang, C. C. Jaing, M. J. Lai, J. S. Chen, S. Huang, M. H. Juang and H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on BST capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Electrochemical and Solid-State Letters, 3(12), p.563, 2000.
[21] T. H. Teng, C. C. Hwang, M. J. Lai, S. C. Huang, J.S. Chen, C. C. Jaing, H. C. Cheng, “Effect of TiN treated by rapid thermal annealing on properties of BST capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Mat. Res. Soc. Symp. Proc., vol. 596, p.37, 2000.
[22] C. W. Teng (Texas Instruments Inc), “DRAM technology trend”, International Symposium on VLSI Technology, Systems, and Applications, Proceedings, p 295~299, 1995.
[23] T. Horikawa, N. Nikami, H. Ito, Y. Ohno, T. Makita and K. Sato, IEICE Trans. Electron. E77-C, p.385, 1994.
[24] C. S. Hwang, S. O. Park, H-J, Cho, C. S. Kang, H. –K. Kang, S. I. Lee and M. Y. Lee, Appl. Phys. Lett, vol. 67, p.2819, 1995.
[25] C. M. Wu and T. B. Wu, “Low temperature deposition of Ba0.4Sr0.6TiO3 thin films on LaNiO3-buffered electrode by rf magnetron sputtering”, Materials Letters, vol. 33, p.97~100, 1997.
[26] T. Matsumoto, A. Niino, S. Baba, K. Mumata and S. Miyake, “Low temperature preparation of perovskite oxide films by ECR sputtering assisted with microwave treatment”, Surface and Coating Technology, vol. 174~175, p.611~614, 2003.
[27] J. H. Joo, J. B. Park, Y. Kim, K. S. Lee, J. S. Lee, J. S. Roh and J. J. Kim, “Low temperature chemical vapor deposition of (Ba, Sr)TiO3 thin films for high density dynamic random access memory capacitors”, Jpn. J. Appl. Phys., vol. 38, p. L-195~198, 1999.
[28] K. Hieda, K. Eguchi, J. Hagahira, M. Kiyotoshi, M. Nakabayashi, H. Tomita, M. Izuha, T. Aoyama, S. Niwa, K. Tsunoda, S. Yamazaki, J. Lin, A. Shimada, K. Nakamura, T. Kubota, M. Sano, K. Hosaka, Y. Fukuzumi, Y. Ishibashi and Y. Kohyama, “Low temperature (Ba, Sr)TiO3 capacitor process integration (LTB) technology for gigabit scaled DRAMs”, Technical Digest - International Electron Devices Meeting, p 789-792, 1999.
[29] M. Yamamuka, T. Kawahara, A. Yuuki and K. Ono, “reaction mechanism and electrical properties of (Ba, Sr)TiO3 films prepared by liquid source chemical vapor deposition”, Jpn. J. Appl. Phys., vol. 35 Part I No. 4B, p. 2530~2535, 1996.
[30] M. Yoshida, H. Tamaguchi, T. Sakuma, Y. Miyasaka, P. -Y. Lesaicherre and A. Ishitani, J. Electrochem. Soc. Vol. 142, p.244, 1995.
[31] Di Wu, A. Li, H. Ling, X. Yin, G. Ge, M. Wang and N. Ming, “Preparation of (Ba0.5, Sr0.5)TiO3 thin films by sol-gel method with rapid thermal annealing”, Appl. Sur. Sci., vol. 165, p. 309~314, 2000.
[32] E. Fujii, Y. Uemoto, S. Hayashi, T. Nasu, Y. Shimada, A. Matsuda, M. Kibe, M. Azuma, T. Otsuki, G. Kano, M. Scott, L. D. McMillan and C. A. Paz de Araujo, “ULSI DRAM technology with Ba0.7Sr0.3TiO3 film of 1.3nm equivalent SiO2 thickness and 10-9 A/cm2 leakage current”, IEDM 92, p. 267, 1992.
[33] L. Goux, M. Gervais, A. Catherinot, C. Champeaux and F. Sabary, “Characterization of pulsed laser deposited Ba0.6Sr0.4TiO3 on Pt coated silicon substrates”, Material Science in Semiconductor Processing, vol. 5, p. 189~194, 2003.
[34] N. H. Nickel, G. B. Anderson and R. I. Johnson, Phys. Rev. B, vol. 56, p. 12065, 1995.
[35] Daisaburo Takashima and Hiroaki Nakano, “ A cell transistor scalable DRAM array architecture”, IEEE Journal of Solid-state Circuits, vol. 37(5), p. 587, 2002
[36] H. Kang, K. Kim, Y. Shin, I. Park, K. Ko, C. Kim, K. Oh, S. Kim, C. Hong, K. Kwon, J. Yoo, Y. Kim, C. Lee, W. Paick, D. Suh, C. Park, S. Lee, S. Ahn, C. Hwang and M. Lee, “ Highly Manufacturable Process Technology for Reliable 256Mbit and 1 Gbit DRAMs”, IEDM Tech. Digest, p. 635~638, 1994.
[37] G. Bronner, H. Aochi, M. Gall , J. Gambino, S. Gernhardt, E. Hammerl, H. Ho, J. Iba, H. Ishiuchi, M. Jaso, R. Kleinhenz, T. Nii, M. Narita, L. Nesbit, W. Neumueller, A. Nitayama, T. Ohiwa, S. Parke, J. Ryan, T. Sato, H. Takato and S. Yoshikawa, “A fully planarized 0.25um CMOS technology for 256Mbit DRAM and beyond”, IEEE Symposium on VLSI Technology, Digest of Technical Papers, p. 15~16, 1995.
[38] “Solid State Technology”, p. 66, Nov. 2000.
[39] R. D. Isaac, “The future of CMOS technology”, IBM. J. Res. Develop., vol. 44(3), p. 369, May 2000.
[40] Y. Kawamoto, K. Kimura, J. Nakazato and M. Nagao, “The outlook for semiconductor process and manufacturing technologies in the 0.1-um Age”, Hitachi Review, vol. 48(6), p. 334, 1999.
[41] M. S. Tsai, “Radio frequency magnetron sputtering high dielectric constant Barium Strontium and Strontium Bismuth Niobium Tantalate for giga bit DRAM and NVFRAM storage capacitor applications”, Ph.D Thesis EE NCTU, p. 1-28, EE NCTU, Taiwan, 1998.
[42] Kenji Uchino, “Thin film ferroelectric materials and devices”, p. 7~21, Marcel Dekker Inc., New York, 2000.
[43] A. I. Kingon et al., �cHigh-Permittivity Perovshite Thin Films for Dynamic Random-Access Memories�c, MRS bulletin, p.46, July, 1996.
[44] Guido W, �cElectrode Influence on The Charge Transport Through SrTiO3 Thin Films�c, J. Appl. Phys., vol. 78 (10), p. 6113~6121, 1995.
[45] C. S. Hwang, B. T. Lee, H. J. Cho, K. H. Lee, C. S. Kang, H. Hideki, S. I. Lee, anf M. Y. Lee, �cA Positive Temperature Coefficient of Resistivity Effect from a Paraelectric Pt/(Ba0.5Sr0.5)TiO3/IrO2 Thin-Film Capacitor�c, Appl. Phys. Lett. 71 (3), p. 371~373. 1997.
[46] C. S. Hwang, B. T. Lee, H. J. Cho, K. H. Lee, C. S. Kang, H. Hideki, S. I. Lee, anf M. Y. Lee, �cA Comparative Study on The Electrical Conduction Mechanisms of (Ba0.5Sr0.5)TiO3 Thin Films on Pt and IrO2 Electrodes�c, J. Appl. Phys. vol. 83, no. 7, p. 3703~3713. 1998.
[47] Yin-Pin Wang and Tseung-Yuen Tseng, �cElectronic Defects and Trap-Related Current of (Ba0.4Sr0.6)TiO3 Thin Films�c, J. Appl. Phys. 81 (10), p. 6762~6766. 1997.
[48] Cheol Seong Hwang, �cDepletion Layer Thickness and Schottky Type Carrier Injection at The Interface between Pt Electrodes and (Ba, Sr)TiO3 Thin Films�c, J. Appl. Phys. vol. 85, no. 1, p. 287~295. 1999.
[49] G. W. Dietz, �cLeakage Current in Ba0.7Sr0.3TiO3 Thin Films for Ultrahigh-Density Random Access Memories�c, J. Appl. Phys. 82 (5), p. 2359~2364. 1997.
[50] J. F. Scott, �cMicrostructure-Induced Schottky Barrier Effects in Barium Strontium Titanate (BST) Thin Films for 16 and 64 Mbit DRAM Cells�c, ISAF'92., Proceedings of the Eighth IEEE International Symposium on , p. 356 ~359.
[51] Koichi Takemura, �cRuO2/TiN-Based Storage Electrodes for (Ba, Sr)TiO3 Dynamic Random Access Memory Capacitors�c, Jpn. J. Appl. Phys. Vol. 34, p.5224, 1995.
[52] H. Reisinger, �cDielectric Breakdown, Reliability and Defect Density of (Ba0.7Sr0.3)TiO3 (BST)�c, VLSI Technology, 1998. Digest of Technical Papers. 1998 Symposium on , p. 58 ~59.
[53] Shintaro Yamamichi, �cImpact of Time Dependent Dielectric Breakdown and Stress Induced Leakage Current on the Reliability of (Ba,Sr)TiO3 Thin Film Capacitors for Gbit-scale DRAMs�c, IEDM 1997 Tech. Digest, p. 261~264.
[54] Shintaro Yamamichi, �cImpact of Time Dependent Dielectric Breakdown and Stress-Induced Leakage Current on the Reliability of High Dielectric Constant (Ba,Sr)TiO3 Thin-Film Capacitors for Gbit-scale DRAMs�c, IEEE Trans. Electron Devices, vol. 46, no. 2, p. 342~347, 1999.
[55] T. Horikawa, �cDegradation in (Ba,Sr)TiO3 Thin Films under DC and Dynamic Stress Conditions�c, Reliability Physics Symposium, 1997. 35th Annual Proceedings., IEEE International , p. 82~89.
[56] Shu-chun Huang, �cTime Dependent Dielectric Breakdown of Paraelectric Barium-Strontium-Titanate Thin Film Capacitors for Memory Device Applications�c, J. Appl. Phys. vol. 84, no. 9, p. 5155~5157, 1998.
[57] C. C. Chou, C. S. Hou, G. C. Chang and H. F. Cheng, “Pulsed laser deposition of ferroelectric Pb0.6Sr0.4TiO3 thin films on perovskite substrates”, Applied Surface Science”, vol. 142, p.413~417, 1999.
[58] Y. C. Choi and B. S. Lee, “Bottom electrode dependence of the properties of (Ba, Sr)TiO3 thin film capacitors” Materials Chemistry and Physics, vol. 61, p. 124, 1999.
[59] W. J. Lee, C. Basceri, S. K. Streifer, A. I. Kingon, D. Y. Yang, Y. Park and H. G. Kim, “Ir and Ru electrodes for (Ba,Sr)TiO3 thin films deposited by liquid delivery source chemical vapor deposition”, Thin Solid Films, p.285, 1998.
[60] S. Yamamichi, P. Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H. Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, �cA Stacked Capacitor Technology with ECR Plasma MOCVD (Ba,Sr)TiO3 and RuO2/Ru/TiN/TiSix Storage Nodes for Gb-scale DRAMs�c, IEEE Trans. Electron Devices, vol. 44, no. 7, p. 1076~1083, 1997.
[61] H. Yamaguchi, T. Iizuka, H. Koga, K. Takemura, S. Sone, H. Yabuta, S. Yamamichi, P. Y. Lesaicherre, M. Suzuki, Y. Kojima, K. Nakajima, N. Kasai, T. Sakuma, Y. Kato, Y. Miyasaka, M. Yoshida, S. Nishimoto, �cA Stacked Capacitor with An MOCVD-(Ba,Sr)TiO3 Film and A RuO2/Ru Storage Node on A TiN-Capped Plug for 4 Gbit DRAMs and Beyond�c, IEDM 1996 Tech. Digest, p. 675~678., 1996.
[62] S. Onishi, K. Hamada, K. Ishhara, Y. Ito, S. Yokoyama, J. Kudo, K. Sakiyama, IEDM Digest of Technical Papers, p. 843~846, 1994.
[63] S. R. Summerfelt, Thin Film Ferroelectric Materials and Devices, R. Ramesh, p.31, Kluwer Academic Publishers, 1997.
[64] E. Fujii, Y. Uemoto, S. Hayashi, T. Nasu, Y. Shimada, A. Matsuda, M. Kibe, M. Azuma, T. Otsuki, G. Kano, M. Scott, L. D. Mcmillan, and C. A. Paz de Araujo, �cULSI DRAM Technology with Ba0.7Sr0.3TiO3 Film of 1.3nm Equivalent SiO2 Thickness and 10-9 A/cm2 Leakage Current�c, IEDM Tech. Digest., p.267, 1992.
[65] B. T. Lee , �cIntegration of (Ba, Sr)TiO3 Capacitor with Platinum Electrodes Having SiO2 Spacer�c, IEDM 1997 Tech. Digest, p.249.
[66] S. Wolf and R. N. Tauber, “Silicon processing for the VLSI era, volume 1- process technology”, p. 352~6, Lattice Press, Sunset Beach, California US, 1986.
[67] Y. Zhu, J. Zhu, J. Song and S. B. Desu, “Laser-assisted low temperature processing of Pb(Zr, Ti)O3 thin film”, Applied Physics Letters, vol. 73(14), p.1958, Oct 1998.
[68] J. Gottmann, B. Vosseler and E. W. Kreutz, “Laser crystallization during pulsed laser deposition of barium titanate thin films at low temperatures”, vol. 197/198, p.831, 2002.
[69] Douglas B. Chrisey and Graham K. Hubler, “Pulsed laser deposition of thin films”, p. 1, John Wiley & Sons Inc., New York, 1992.
[70] A. Marmorstein, A. T. Voutsas, R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed poly silicon thin films”, J. Appl. Phys. Vol. 82(9), 1, p.4303, Nov. 1997.
[71] S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors”, J. Appl. Phys. Vol. 82(8), p. 4086, 1997.
[72] N. H. Nickel et al., �cGrain-Boundary defects in Laser-Crystallized Polycrystalline Silicon�c, Phys. Rev. B Vol. 56 No. 9, p.65~68, 1997.
[73] H. J. Kim et al., in Micro-crystalline Semiconductors: Materials Science & Devices, Edited by P. M. Fauchet et al., MRS Symposia Processings No. 283, p.703, 1993.
[74] N. G. Ainsile, C. R. Morelock, and D. Turnbull, �cSymposium on Nuleation and Crystallization in Glasses and Melts�c M. K. Reser, G. Smith, and H. Insley, editors,.Am. Ceram. Soc., Columbus, Ohio., p. 97, 1962.
[75] Hiroyuki Kuriyama et al., �cComprehensive Study of Lateral Grain Growth in Poly-Si Films by Excimer Laser Annealing and Its Application to Thin Film Transistors�c, Jpn. J. Appl. Phys. Vol. 33, p.5657~5662, 1994.
[76] Hiroyuki Kuriyama et al., �cLateral Grain Growth of Poly-Si Films with a Specific Orientation by an Excimer Laser Annealing Method�c, Jpn. J. Appl. Phys. Vol. 32, p.6190~6195, 1993.
[77] S. Kambayashi et al.: Ext. Abstr. 21nd Int. Conf. Solid State Devices and Materials, p.169, 1989.
[78] H. Kumomi et al., : Ext. Abstr. 22nd Int. Conf. Solid State Devices and Materials, p.1159, 1990.
[79] N. Yamauchi et al., IEEE Trans. Electon Device, ED-38, p. 55., 1991
[80] J. M. Poate and James W. Mayer, �cLaser Annealing of Semiconductors�c, Inc, p.1.
[81] N. G. Ainsile, J. D. MacKenzie, , and D. Turnbull, J. Phys. Chem. Glasses, vol. 65, p.1718, 1961.
[82] B. G. Bagley and H. S. Chen , �cLaser-Solid Interactions and Laser Processing�c S. D. Ferris, H. J. Leamy, and J. M. Poate, editors, Am. Inst. Phys., New York, p. 97, 1979.
[83] J. C. Baker and J. W. Cahn, �cSolidificztion�c, T. J. Hughel and G. F. Bolling editors, Am. Soc. Met Metals Park, p. 23, Ohio, 1971.
[84] N. Bloembergen, �cLaser-Solid Interactions and Laser Processing�c, S. D. Ferris, H. J. Leamy, and J. M. Poate editors, Am. Inst. Phys., p.1, New York, 1979.
[85] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano and Y. Kuwano, “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor”, Jap. J. Appl. Phys., vol. 30(12B), p.3700, 1991.
[86] A. Marmorstein, A. T. Voutas and R. Solanki, “ A ayatematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, J. Appl. Phys. Vol. 82(9), p.4303, 1 Nov. 1997.
[87] S. Yamamichi, P-Y Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H.Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, “An ECR MOCVD (Ba, Sr)TiO3 based stacked capacitor technology with RuO2/Ru/TiN/TiSix storage nodes for Gbit-scale DRAMs”, in IEDM Tech. Dig., p.119 , 1995.
[88] C. C. Hwang, M. H. Juang, M. J. Lai, C. C. Jaing, J. S. Chen, S. Huang, H. C. Cheng, Solid-St Electron., vol. 45, “Effect of rapid thermal annealed TiN barrier layer on the Pt/BST/Pt capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, p.121~125, 2001.
[89] C. C. Hwang, C. C. Jaing, M. J. Lai, J. S. Chen, S. Huang, M. H. Juang and H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on BST capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Electrochemical and Solid-State Letters, vol. 3(12), p.563, 2000.
[90] T. H. Teng, C. C. Hwang, M. J. Lai, S. C. Huang, J.S. Chen, C. C. Jaing, H. C. Cheng, “Effect of TiN treated by rapid thermal annealing on properties of BST capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Mat. Res. Soc. Symp. Proc., vol. 596, p.37, 2000.
[91] T. Kuoiwa, Y. Tsunenine, T. Horikawa, T. Makita, J. Tanimura, N. Mikami, K. Sato, “Dielectric properties of (Ba,Sr)TiO3 thin films prepared by RF sputtering for dynamic random access memory application”, Jpn. J. Appl. Phys., vol. 33(9B) Part I, p. 5187, 1994.
[92] A. Qutzourhit, J. U. Trefny, T. Kito, B. Yarar, A. Naziripour, A. M. Hermann, “Fabrication and characterization of Ba1-xSr1-xTiO3 tunable thin film capacitors”, Thin Solid Films, vol. 259, p. 218, 1995.
[93] S. Onishi, K. Hamada, K. Ishhara, Y. Ito, S. Yokoyama, J. Kudo, K. Sakiyama, “A half micron ferroelectric memory cell technology with stacked capacitor structure”, IEDM Digest of Technical Papers, p. 843~846, 1994.
[94] S. R. Summerfelt, Thin Film Ferroelectric Materials and Devices, R. Ramesh, p.31, Kluwer Academic Publishers, 1997.
[95] S. Yamamichi, P-Y Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H.Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, “An ECR MOCVD (Ba, Sr)TiO3 based stacked capacitor technology with RuO2/Ru/TiN/TiSix storage nodes for Gbit-scale DRAMs”, in IEDM Tech. Dig., p.119, 1995.
[96] C. C. Hwang, M. H. Juang, M. J. Lai, C. C. Jaing, J. S. Chen, S. Huang, H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on the Pt/BST/Pt capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Solid-St Electron., vol. 45, p. 121~125, 2001.
[97] C. R. Cho, Sook II Kwun, T. W. Noh and M. S. Jang, “Electrical properties of sol-gel deposited BaTiO3 thin films on Si(100) substrates”, Jpn. J. Appl. Phys., vol. 36, p. 2196, 1997.
[98] M. S. Tsai, S. C. Sun and T. Y. Tseng, “Effect of oxygen to argon ratio on properties of (Ba, Sr)TiO3 thin films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., vol. 82(7), p. 3482~3487, 1997.
[99] J. Lee, Y. C. Choi and B. S. Lee, “Effects of O2/Ar ration and annealing on the properties of (Ba, Sr)TiO3 films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., vol. 36(6A) Part I, p. 3644, 1997.
[100] C. C. Hwang, C. C. Jaing, M. J. Lai, J. S. Chen, S. Huang, M. H. Juang and H. C. Cheng, “Effect of rapid thermal annealed TiN barrier layer on BST capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Electrochemical and Solid-State Letters, vol. 3(12), p.563~565, 2000.
[101] T.H. Teng, C. C. Hwang, M. J. Lai, S. C. Huang, J.S. Chen, C. C. Jaing, H. C. Cheng, “Effect of TiN treated by rapid thermal annealing on properties of BST capacitors prepared by RF magnetron co-sputter technique at low substrate temperature”, Mat. Res. Soc. Symp. Proc., vol. 596, p.37~42, 2000.
[102] D.L. Smith D, Thin-Film Deposition Principles and Practice, p.480, McGraw-Hill Inc., 1995.
[103] S. B. Krupanidhi, H. Hu and G. R. Fox, Ferroelectric Thin Films: Synthesis and Basic Properties, Carlos Paz de Araujo, J. F. Scott, G. W. Taylor, S. B. Krupanidhi, Editors, p.93 and p.431, Gordon and Breach Ppublishers, 1996.
[104] J. Roth, In Sputtering by Particle Bombardment II, R. Behrish, Editor, p.91, Springer-Verlag, New York, 1983.
[105] B. D. Cullity, Elements of X-ray diffraction, p.102, Anddison-Wesley Inc., 1978.
[106] C. C. Hwang, M. J. Lai, C. C. Jaing, J. S. Chen, S, Huang, M. H. Juang and H. C. Cheng, “Low temperature process to improve the leakage current of (Ba, Sr)TiO3 films on Pt/TiN/Ti/Si substrates”, Jpn. J. Appl. Phys., vol. 39, L1314-L1316, 2000.
[107] T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kotaoka, K. Sato and M. Nunoshta, Jpn. J. Appl. Phys, vol. 32(9B), p. 4126, 1993.
[108] K. Takemura, S. Yamamichi, P. Y. Lesaicherre, K. Tokashiki, H. Miyamoto, H. Ono, Y. Miyasaka and M. Yoshida, “RuO2/TiN based storage electrodes for (Ba, Sr)TiO3 dynamic random access memory capacitors”, Jpn. J. Appl. Phys., vol. 34(9B) Part I, p. 5224~5229, 1995.
[109] K. Okazaki, K. Nagata, J. Electron. Commun. Soc. Jpn., C53, p. 815, 1970.
[110] R. M. Waser, J. Am. Ceram. Soc., vol. 72(12), p. 2234, 1989.
[111] D. M. Smyth, M. P. Harmer and P. J. Peng, “Defect chemistry of relaxor ferroelectrics and the implications for dielectric degradation”, J. Am. Ceram. Soc., vol. 72(12), p. 2276, 1989.
[112] I. Stolichnov, A. Tagantsev, N. Setter, S. Okhonin, P. Fazan, J. S. Cross and M. Tsukada, “Dielectric breakdown in (Pb, La)(Zr, Ti)O3 ferroelectric thin films with Pt and oxide electrodes”, J. Appl. Phys., vol. 87(4), p. 1925, 2000.
[113] W. Heywang, J. Mater. Sci., vol. 6, p. 1214, 1971;
[114] G. T. Mallick, JR. and P. R. Emtage, “Current-voltage characteristics of semiconducting barium titanate ceramic”, J. Appl. Phys., vol. 39, p. 3088, 1968.
[115] G. E. Pike and C. H. Seager, J. Appl. Phys., vol. 50(5), p.3414, 1979.
[116] M. S. Tsai and T. Y. Tseng, “Conduction mechanism and temperature dependent current-voltage in (Ba, Sr)TiO3 thin films”, J. Electrochem. Soc., vol. 145(8), p. 2853, 1998.
[117] L. H. Parker and A. F. Tasch, “Ferroelectric materials for 64Mb and 256 Mb DRAMs”, IEEE Circuits and Devices Magazine, p. 17~26, Jan. 1990.
[118] C. S. Hwang, B. T. Lee, C. S. Kang, J. W. Kim, K. H. Lee, H. J. Cho, H. Horii, W. D. Kim, S. I. Lee, Y. B. Roh and M. Y. Lee, J. Appl. Phys., vol. 83(7), p. 3703, 1998.
[119] M. S. Tsai and T. Y. Tseng, “Conduction mechanisms and temperature dependent current-voltage in (Ba, Sr)TiO3 thin films”, J. Electrochem. Soc., vol. 145(8), p. 2853, 1998.
[120] Y. B. Lin and Joseph Ya-mim Lee, “The temperature dependence of the conduction current in Ba0.5Sr0.5TiO3 thin film capacitors for memory device applications”, J. Appl. Phys., vol. 87(4), p. 1841, 2000.
[121] C. S. Hwang, B. T. Lee, C. S. Kang, K. H.Lee, H. J. Cho, H. Hideki, W. D. Kim, S. I. Lee and M. Y. Lee, “Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films”, J. Appl. Phys., vol. 85(1), p. 287, 1999.
[122] R. M. Hill, “The Pool-Frenkel constant”, Thin Solid Films, vol. 8, R21-R24, 1971.
[123] R. Waser R. T. Baiatu and K. H. Hardtl, “dc electrical degradation of perovskite type titanates: I, ceramics”, J. Am. Cerm. Soc., vol. 73(6), p. 1645, 1990.
[124] H. Y. Lee and K. L. Lee, IEEE Tran. On Components, Hybrids, Manuf. Tech. CHMT-T, vol. 4, p. 443, 1984.
[125] M. S. Tsai and T. Y. Tseng, ”Effects of bottom electrodes on resistance degradation and breakdown of (Ba, Sr)TiO3 thin films”, IEEE Trans. Comp. Pack. Tech., vol. 23(1), p. 128, Mar. 2000.
[126] M. S. Tyagi, “Metal-Semiconductor Schottky Barrier Junctions and Their Applications”, B. L. Sharma, Editor, p.27, Plenum Press, New York, 1984.
[127] 許正憬, “利用多靶式射頻濺鍍鈦酸鍶鋇及其在DRAM上應用之研究”, pp.27, 國立中央大學電機工程研究所碩士論文, Taiwan, R.O.C. 1998.
[128] A. Marmorstein, A. T. Voutsas and R. Solanki, “Systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, J. Appl. Phys., vol. 82, p.4303, 1997.
[129] E. Fogarassy, S. Unamuno, P. Legagneux, F. Plais, D. Pribat, B. Godard, M. Stehle, Thin Solid Films, vol. 337, p.143, 1999.
[130] D. C. Shye, B. S. Chiou, C. C. Hwang, J. S. Chen, I. W. Su, C. C. Chou and H. C. Cheng, “Characteristics of Low-temperature-prerpared (Ba, Sr)TiO3 Films Post Treated by Novel Excimer Laser Annealing”, Proceeding of the 13th IEEE International Symposium on Applications of Ferroelectrics (ISAF): May, 2002, p227
[131] F. P. Incropera. and D. P. De Witt, “Introduction to heat transfer, 2nd edition”, p226~285, John Wiley & Sons, New York, 1990,.
[132] Martin Von Allmen and Andreas Blastter, “Laser-Beam Interactions with Materials,Physical Principles and Applications, Second Edition”, p.44, Springer-Verlag, Berlin, 1995.
[133] M. Adachi et. al., Landolt-Bornstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Ferroelektrika und verwandte Substanzen, eds. K.-H. Hellwege, A. M Hellewege. editors, p. 59~115, 1981, Springer-Verlag, Berlin, 1981.
[134] C. F. Chou, H. C. Pan and C. C. Chou, “Electrical properties and manufactures of PbZrTiO3 thin films prepared by laser annealing techniques” Jpn. J. Appl. Phys. vol. 41, p.6679, 2002.
[135] N. H. Nickel, G. B. Anderson and R. I. Johnson, Phys. Rev. B, vol. 56, p. 12065, 1995.
[136] R. W. Babbitt, T. E. Koscica, w. C. Drach, ”Planar Microwave Electro-optic Phase Shifters”, Microwave J. vol. 35, p. 63, 1992.
[137] C. C. Chou, C. S. Hou and H. F. Cheng, “Structure control of pulsed-laser-deposited Pb0.6Sr0.4TiO3/La0.5Sr0.5CoO3 thin films on various substrates”, Ferroelectrics, vol 206-207, p. 393~405, 1998.
[138] M. H. Loretto, and R. E. Smallman, “Defect Analysisin Electron Microscopy”, Champman and Hall,Lodon, 1975.
[139] D. M. Smyth, M. P. Harmer and P. J. Peng, “Defect chemistry of relaxor ferroelectrics and the implications for dielectric degradation”, J. Am. Ceram. Soc., vol. 72, p. 2276, 1989.
[140] M. S. Tsai and T. Y. Tseng, “Conduction mechanism and temperature dependent current-voltage in (Ba, Sr)TiO3 thin films”, J. Electrochem. Soc., vol. 145, p. 2853, 1998.
[141] P. Baeri, G. Foti, J.M. Poate and A.G. Cullis, Phys. Rev. Lett., vol. 45, p. 2036, 1980.
[142] W. Y. Hsu and J. D. Luttmer, “Direct current conduction properties of sputtered Pt/(Ba0.7Sr0.3) TiO3/Pt thin films capacitors”, Appl. Phys. Lett., vol. 66, p.2975, 1995.
[143] M. S. Tsai and T. Y. Tseng, “Conduction mechanism and temperature dependent current-voltage in (Ba, Sr)TiO3 thin films”, J. Electrochem. Soc., vol. 145, p. 2853, 1998.
[144] S. Maruno, T. Kuroiwa, N. Mikami, K. Sato, S. Ohmura, M. Kaida, T. Yasue and T. Koshikawa: Appl. Phys. Lett., vol. 73, p. 954, 1998.
[145] K. Abe and S. Komatsu, Jpn. J. Appl. Phys., vol. 33, p. 5297, 1994.
[146] P. Bhattacharya, K. H. Park and Y. Nishhioka, Jpn. J. Appl. Phys., vol. 33, p. 5231, 1994.
[147] J. J. Lee, C. L. Thio and S. B. Desu: J. Appl. Phys., vol. 78, p. 5073, 1995.
[148] M. S. Tsai, S. C. Sun and T. Y. Tseng, “Effect of bottom electrode materials and annealing treatments on the electrical characteristics of Ba0.47Sr0.53TiO3 film capacitor”, J. Am. Ceram. Soc. Vol. 82, p. 351, 1999.
[149] M. S. Tsai, S. C. Sun and T. Y. Tseng, “Effect of bottom electrode materials and annealing treatments on the electrical characteristics of Ba0.47Sr0.53TiO3 film capacitor”, J. Am. Ceram. Soc. Vol. 82, p.351, 1998.
[150] M. S. Tsai, S. C. Sun and T. Y. Tseng, “Effect of oxygen to argon ratio on properties of (Ba, Sr)TiO3 thin films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., vol. 82, p. 3482, 1997.
[151] M. S. Tsai, S. C. Sun and T. Y. Tseng, “Electrical properties of O2 and N2 annealed (Ba, Sr)TiO3 thin films”, Integr. Ferroelectr. Vol. 21, p. 173, 1998.
[152] J. H. Joo, J. M. Seon, Y. C. Jeon, K. Y. Oh, J. S. Roh and J. J. Kim: Appl. Phys. Lett. 70, p. 3053, 1997.
[153] T. Horikawa, N. Mikami, T. Makita, J. Tanimura, M. Kataoka, K. Sato and M. Nunoshita: Jpn. J. Appl. Phys., vol. 32, p. 4126, 1993.
[154] J. H. Joo, J. M. Seon, Y. C. Jeon, K. Y. Oh, J. S. Roh and J. J. Kim, “Improvement of leakage currents of Pt/(Ba,Sr)TiO3/Pt capacitors”, Appl. Phys. Lett. Vol. 70(22), p.3603, June 1997.
[155] N. Sugii and K. Tagagi, “Change in surface morphologies with pulsed-laser-deposition-temperature for SrTiO3 and Ba0.7Sr0.3TiO3 thin films on Pt electrodes”, Thin Solid Film, vol. 323, p. 63, 1998.
[156] G. T. Mallick, Jr. and P. R. Emtage, J. Appl. Phys. Vol. 39, p. 3088, 1968.
[157] H. Ihrig and W. Puschert, “Systematic experimental and theoretical investigation of the grain-boundary resistivities of n-doped batio//3 ceramics”, J. Appl. Phys., vol. 48, p. 3081, 1977.
[158] Y. Yoshiyuki, Kato Megumi, and K. Yoshinori et al., Materials Research Society Symposium - Proceedings, vol. 688, p. 309, 2002.
[159] A.Sato, S. Nakagawa, and M. Naoe, “Improvement of crystallinity and magnetic characteristics of ferromagnetic-Co77Cr20Ta3/param agnet ic- Co65Cr35 bilayered films”, IEEE Trans. on Magnetics, vol. 36, p. 2936 2000.
[160] Y. C. Pao, C. Yuen, C. Madden, and R. Marsland, “Long wavelength In0.53Ga0.47As photodetectors on GaAs with a thin super l attice buffer”, IEDM Tech. Dig., p. 217~220, 1993.
[161] K. N. Tu, J. W. Mayer and L. C. Feldman, “Electronic thin film science”, p. 6~8, 127~156,Macmillan Publishing Company, New York,1992.
[162] S. Wolf and R. N. Tauber, “Silicon processing for the VLSI era: volume 1 - process technology”, p. 124~160, 305~6, Lattice Press, California, U. S., 1986
[163] M. S. Tsai, S. C. Sun and T. Y. Tseng, " Electrical properties of O2 and N2 annealed (Ba,Sr)TiO3 thin films ", Integrated Ferroelectric, 21, p. 173, 1998.

Appendix A
[A.1] Kenji Uchino, Ferroelectric devices, p.243-254,: Marcel Dekker Inc, New York, 2000.
[A.2] O. Saburi, J. Phys. Soc. Jpn., vol. 14, p.1159, 1959.
[A.3] Lichen Wang and Zhigang Zhou, Part A, IEEE Transactions on., vol. 18, p.249 – 251, 1995.
[A.4] J. S. Shie, Y. M. Chen, M. Ou-Yang and Bruce C. S. Chou, J. Microelectromechanical Sys., vol.5(4), p.298, 1996.
[A.5] H. Ihrig and W. Puschert, J. Appl. Phys., vol. 48(7), p.3081, 1977.
[A.6] T. Mori, T. Kudoh, K. Komatsu and M. Kimura, IEEE Proc. MEMS, vol. 3, p. 257-262, 1994.
[A.7] C. S. Hwang, B. T. Lee, C. S. Kang, J. W. Kim, K. H. Lee, H. J. Cho, H. Horii, W. D. Kim, S. I. Lee, Y. B. Roh and M. Y. Lee, J. Appl. Phys., vol. 83(7), p.3703 1998.
[A.8] M. S. Tsai, T. Y. Tseng, J. Electrochem. Soc., vol.145, p.2853, 1998.
[A.9] Y. B. Lin and Joseph Ya-mim Lee, J. Appl. Phys., 87(4), p.1841, 2000.
[A.10] C. S. Hwang, B. T. Lee, C. S. Kang, K. H.Lee, H. J. Cho, H. Hideki, W. D. Kim, S. I. Lee and M. Y. Lee, J. Appl. Phys., vol.85(1), p.287, 1999.
[A.11] M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials, p.534-561, Clarendon Press, Oxford, 1977.

Appendix B
[B.1] R. W. Babbitt, T. E. Koscica, w. C. Drach, Microwave J. vol.35, p.63, 1992.
[B.2] S.-T. Zhang, B. Yang, Y. –F. Chen, Z. –H. Liu, X. –B. Yin, Y. Wang and N. –B. Ming, J. Appl. Phys., vol. 91(5), p.3160, 2002.
[B.3] D. Roy and S. B. Krupanidhi, J. Mater. Res., 7(9), p.2521, 1992.
[B.4] D. H. Kang, J. H. Kim, J. H. Park and K. H. Yoon, Materials Research Bulletin, 36, p.265, 2001.
[B.5] Douglas B. Chrisey and Graham K. Huber, Pulsed Laser Deposition of Thin Films, Wiley-Interscience Publication, New York, p.55-87, 1992.
[B.6] C. -C. Chou, C. –S. Hou, G. –C. Chang and H. –F Cheng, Applied Surface Science, vol.142, p.413, 1999.
[B.7] C. –C. Chou, C. –S. Hou and H. –F. Cheng, Ferroelectrics, vol.206-207, p.393, 1998.
[B.8] C. –S. Hou, H. –C. Pan, C. –C. Chou and H. –F. Cheng, Ferroelectrics, vol. 232, p.129, 1999.
[B.9] Y. K. Kim, K. S. Lee and S. Baik, J. Mater. Res., vol. 16(9), p.2463, 2001.
[B.10] Y. Nakata, G. Soumagne, T. Okada and M. Maeda, Applied Surface Science, vol. 127-129, p.650-654, 1998.
[B.11] H. N. Al-Shareef and A. I. Kingon,In: C. P. de Araujo, J. F. Scott and G. W. Taylor (Eds.), Ferroelectric Thin Films: Synthesis and Basic Properties, Ferroelectric and Related Phenomena vol.0, Gordon and Breach Publishers, p.201-214 and p.465-478, 1996.
[B.12] B. D. Cullity, Elements of X-ray diffraction, Anddison-Wesley Inc., p.102, 1978.
[B.13] Y. Xu, Ferroelectric Materials and their applications, Elsevier, Amsterdam, p.101-162, 1991.
[B.14] M. Adachi et. al.: Landolt-Bornstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Ferroelektrika und verwandte Substanzen, eds. K.-H. Hellwege, A. M Hellewege., Springer-Verlag, Berlin, 1981.
[B.15] RT66A Standardized Ferroelectric Test System V2.1 Operating Manual, Radiant Technologies, Inc..
[B.16] S.-M. Nam, H. Kimura, N. Ohashi and T. Tsurumi, Jpn. J. Appl. Phys., vol.38, p.5383-5387, 1999.
[B.17] W. J. Lee, Y. M. Kim and H. G. Kim, Thin Solid Films, vol. 269, p.75, 1995.
[B.18] C. V. R. Vasant Kumar, R. Pascual, and M. Sayer, J. Appl. Phys., vol. 71, p.864, 1992.
[B.19] C. S. Hwang, B. T. Lee, C. S. Kang, J. W. Kim, K. H. Lee, H. J. Cho, H. Horii, W. D. Kim, S. I. Lee, Y. B. Roh and M. Y. Lee, J. Appl. Phys., vol.83(7), p. 3703, 1998.
[B.20] R. M. Waser, J. Am. Ceram. Soc., 72(12) (1989) 2234.
[B.21] D. M. Smyth, M. P. Harmer and P. J. Peng, J. Am. Ceram. Soc., vol. 72(12), p.2276, 1989.
[B.22] M. S. Tsai and T. Y. Tseng, J. Electrochem. Soc., vol.145(8), p.2583, 1998.
[B.23] H. J. Chung, J. H. Kim and S. I. Woo, Chem. Mater., 13, p.1441-1443, 2001.
[B.24] Y. Masuda, S. Fujita, T. Nishida, H. Masumoto and T. Hirai, Proceedings of the 1998 11th IEEE International Symposium on Appliations of Ferroelectrics (ISAF-XI), Aug 24-27, p.23, 1998.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top