跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/04 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯兆軒
研究生(外文):Chao-Hsuan Ke
論文名稱:兩階段基因選擇用於基因微陣列資料分類計算
論文名稱(外文):Two-Stage Gene Selection Algorithms for Classification of Gene Expression Data
指導教授:楊正宏楊正宏引用關係
指導教授(外文):Cheng-Hong Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:123
中文關鍵詞:基因微陣列表現資料改良型粒子族群最佳化基因選擇
外文關鍵詞:Microarray gene expression dataImproved particle swarm optimizationGene Selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:934
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
近年來,基因微陣列表現資料是一個非常有效的醫學診斷工具,目前已被廣泛的用於分析基因和疾病之間的關係特性。由於基因微陣列具有高特徵維度的資料特性,使其可以同時間分析數千至數萬個基因表現特性,但也因此造成在分類計算時需要更多的運算時間。許多之前的研究指出特徵(基因)選取具有某些優點,利用特徵選取的特性針對基因微陣列選出對於分類計算具有良好成效的特徵子集合,並藉此提高分類正確率。本研究的目的即是針對基因微陣列資料選取出可以明顯提升分類正確率的基因子集合。我們提出一個結合刪除式與進化式的演算法進行兩階段的基因選取,其中結合布林運算的改良型二進位粒子族群最佳化演算法針對原始的二進位粒子族群進行改良,並當作一個新的進化演算法的特徵選取方式,利用k個最近鄰居法與支持向量機兩個分類演算法針對選出的特徵子集合進行分類計算。實驗結果顯示我們所提出的方法可以有效的選出少量的特徵子集合並獲得較高的分類結果。
The microarray is a medical diagnostic tool with good efficiency, and it was used for analyzing the behavior characteristic between the gene and disease by the extensive one at present. Microarray data are characterized by a high dimension, which could be analyzed more than thousand of genes and diseases simultaneously. However, it will lead to need more computation time when it is implemented on classification. Many previous literatures showed the feature (gene) selection has some advantage, such as gene extraction which influences classification accuracy effectively, to eliminate the useless genes and improve the calculation performance and classification accuracy. The goal of this study is to select a small set of genes which are useful to the classification task. We proposed a two-stage method using several filter methods to proceed gene ranking and combined the evolutional algorithms on gene expression data to select an optimal gene subset. In this study, an improved particle swarm optimization which introduced a Boolean function was used to improve the disadvantage of standard binary particle swarm optimization as a new evolutional algorithm for gene selection, and both k-nearest neighbor and support vector machine classifiers were used to calculate the classification accuracy. The experimental results revealed that our proposed feature selection method is able to effectively select the relevant gene subset and achieve better classification accuracy than the previous studies.
ABSTRACT IN CHINESE i
ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENT iv
LIST OF TABLES vi
LIST OF FIGURES vii
I. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 2
1.3 Research Purposes 4
1.4 Organization of thesis 5
II. RELATED WORK 6
2.1 Feature selection 6
2.1.1 Filter model methods 6
2.1.1.1 Information Gain 8
2.1.1.2 Gain Ratio 9
2.1.1.3 Chi-square 10
2.1.1.4 Relief-F 10
2.1.1.5 Correlation-based feature selection 11
2.1.2 Wrapper model methods 11
2.1.2.1 Sequential forward selection 12
2.1.2.2 Sequential backward elimination 13
2.1.3 Embedded methods 13
2.2 Classification algorithms 15
2.2.1 k-nearest neighbor 15
2.2.2 Support vector machine 18
2.3 Classification accuracy estimate 21
2.3.1 Holdout validation 21
2.3.2 K-fold cross-validation 22
2.3.3 Leave-one-out cross-validation 22
2.4 Evolutionary algorithm for feature selection 23
2.4.1 Evolutionary algorithm 23
2.4.2 Binary particle swarm optimization 26
III. METHODOLOGY 29
3.1 Experimental framework 29
3.2 Gene selection for microarray gene expression data 30
3.2.1 Filter model methods for gene subset selection 31
3.2.2 BPSO for gene subset selection 32
3.2.2.1 Encoding of candidate solutions 32
3.2.2.2 Fitness function 34
3.2.2.3 Termination condition 34
3.2.2.4 BPSO learning process 35
3.3 Proposed method 40
3.3.1 Boolean binary particle swarm optimization 40
3.3.2 Two-stage gene selection 44
IV. EXPERIMENT AND RESULTS 46
4.1 Experimental data 46
4.1.1 Data preprocess 47
4.2 Parameter setting 48
4.3 Result of different gene selection methods 50
4.3.1 Filter model methods for gene selection 50
4.3.2 Wrapper model methods for gene selection 58
4.3.3 Two-stage method for gene selection 73
V. DISCUSSION 100
VI. CONCLUSION 106
VII. FUTURE WORK 109
REFERENCES 111
APPENDIX A 121
[1]Ooi, C. H. and Tan, P., 2003, "Genetic algorithms applied to multi-class prediction for the analysis of gene expression data", Bioinformatics, vol. 19, pp. 37-44, January 1,.
[2]Li, T., Zhang, C. and Ogihara, M., 2004, "A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression", Bioinformatics, vol. 20, pp. 2429-2437, October 12,.
[3]Liu, B., Cui, Q., Jiang, T. and Ma, S., 2004, "A combinational feature selection and ensemble neural network method for classification of gene expression data", BMC Bioinformatics, vol. 5, pp. 136, September 27,.
[4]Wang, Y., Makedon, F. S., Ford, J. C. and Pearlman, J., 2005, "HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data", Bioinformatics, vol. 21, pp. 1530-1537, April 15,.
[5]Huang, H. L., Lee, C. C. and Ho, S. Y., 2007, "Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers", Biosystems, vol. 90, pp. 78-86, July-August,.
[6]Shen, Q., Shi, W. M., Kong, W. and Ye, B. X., 2007, "A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification", Talanta, vol. 71, pp. 1679-1683, March 15,.
[7]Zhang, J. G. and Deng, H. W., 2007, "Gene selection for classification of microarray data based on the Bayes error", BMC Bioinformatics, vol. 8, pp. 370, October 3,.
[8]Saeys, Y., Inza, I. and Larranaga, P., 2007, "A review of feature selection techniques in bioinformatics", Bioinformatics, vol. 23, pp. 2507-2517, October 1,.
[9]Zexuan, Z., Ong, Y. S. and Manoranjan, D., 2007, "Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework", IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, pp. 70-76, February,.
[10]Jafari, P. and Azuaje, F., 2006, "An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors", BMC Bioinformatics, vol. 6, pp. 27, June 21,.
[11]Kalles, D. and T. Morris, 1996, "Efficient incremental induction of decision trees", Machine Learning, vol. 24, pp. 231-242.
[12]Quinlan, J. R., 1986, "Induction of Decision Tree", Machine Learning, vol. 1, pp. 81-106.
[13]Huang, J., Y. Cai and X. Xu, 2007, "A hybrid genetic algorithm for feature selection wrapper based on mutual information", Pattern Recognition Letters, vol. 28, pp. 1825-1844.
[14]Liu, X., Krishnan, A. and Mondry, A., 2005, "An Entropy-based gene selection method for cancer classification using microarray data", BMC Bioinformatics, vol. 6, pp. 76, March 24,.
[15]Robnik-Šikonja, M. and Kononenko, I., 2003, "Theoretical and Empirical Analysis of ReliefF and RReliefF", Machine Learning, vol. 53, pp. 23-69, October,.
[16]Yuhang, W. and Makedon, F., 2004, "Application of Relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data," Proceedings of 2004 IEEE Computational Systems Bioinformatics Conference 2004. CSB 2004, 16-19 Auguest.pp. 497-498.
[17]Baumgartner, C., Bohm, C., Baumgartner, D., Marini, G., Weinberger, K., Olgemoller, B., Liebl, B. and Roscher, A. A., 2004, "Supervised machine learning techniques for the classification of metabolic disorders in newborns", Bioinformatics, vol. 20, pp. 2985-2996, November 22,.
[18]Buckinx, W., Moons, E., Van den Poel, D. and Wets, G., 2004, "Customer-adapted coupon targeting using feature selection", Expert Systems with Applications, vol. 26, pp. 509-518.
[19]Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D. and Levy, S., 2005, "A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis", Bioinformatics, vol. 21, pp. 631-643, March 1, 2005.
[20]Wang, Y., Tetko, I. V., Hall, M. A., Frank, E., Facius, A., Mayer, K. F. X. and Mewes, H. W., 2005, "Gene selection from microarray data for cancer classification--a machine learning approach", Computational Biology and Chemistry, vol. 29, pp. 37-46, February,.
[21]Chaolin, Z., Xuesong, L. and Xuegong, Z., 2006, "Significance of Gene Ranking for Classification of Microarray Samples", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 3, pp. 312-320, July-September,.
[22]Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. A. A. K. L. A. and Jain, A. K. A. J. A. K., 2000, "Dimensionality reduction using genetic algorithms", IEEE Transactions on Evolutionary Computation, vol. 4, pp. 164-171, July,.
[23]Liu, J. J., Cutler, G., Li, W., Pan, Z., Peng, S., Hoey, T., Chen, L. and Ling, X. B., 2005, "Multiclass cancer classification and biomarker discovery using GA-based algorithms", Bioinformatics, vol. 21, pp. 2691-2697, June 1,.
[24]Wang, X., Yang, J., Teng, X., Xia, W. and Jensen, R., 2007, "Feature selection based on rough sets and particle swarm optimization", Pattern Recognition Letters, vol. 28, pp. 459-471, March,.
[25]Rui, X., Georgios, C. A. and Donald, C. W., 2007, "Multiclass Cancer Classification Using Semisupervised Ellipsoid ARTMAP and Particle Swarm Optimization with Gene Expression Data", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, pp. 65-77, January-March,.
[26]Zhang, H. and Sun, G., 2002, "Feature selection using tabu search method", Pattern Recognition, vol. 35, pp. 701-711, March,.
[27]Frank, E., Hall, M., Trigg, L., Holmes, G. and Witten, I. H., 2004, "Data mining in bioinformatics using Weka", Bioinformatics, vol. 20, pp. 2479-2481, October 12, 2004.
[28]Quinlan, J. R., 1996, "Improved use of continuous attributes in C4.5", Journal of Artificial Intelligence Research, vol. 4, pp. 77-90.
[29]Guyon, I., Weston, J., Barnhill, S. and Vapnik, V., 2002, "Gene Selection for Cancer Classification using Support Vector Machines", Machine Learning, vol. 46, pp. 389-422.
[30]Yeang, C. H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, R. M., Angelo, M., Reich, M., Lander, E., Mesirov, J. and Golub, T., 2001, "Molecular classification of multiple tumor types", Bioinformatics, vol. 17, pp. S316-322, June 1,.
[31]Lee, Y. and Lee, C. K., 2003, "Classification of multiple cancer types by multicategory support vector machines using gene expression data", Bioinformatics, vol. 19, pp. 1132-1139, June 12,.
[32]Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E. S., 1999, "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring", Sciences, vol. 286, pp. 531-537, October 15,.
[33]Li, L., Weinberg, C. R., Darden, T. A. and Pedersen, L. G., 2001, "Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method", Bioinformatics, vol. 17, pp. 1131-1142, December 1,.
[34]Jirapech-Umpai, T. and Aitken, S., 2005, "Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes", BMC Bioinformatics, vol. 6, pp. 148, June 15,.
[35]Inza, I. a., Larran˜aga, P., Blanco, R. and Cerrolaza, A. J., 2004, "Filter versus wrapper gene selection approaches in DNA microarray domains", Artificial Intelligence in Medicine, vol. 31, pp. 91-103.
[36]Quinlan, J. R., C4.5:Programs For Machine Learning: Morgan Kaufmann, 1993.
[37]Huan, L. and Setiono, R., 1995, "Chi2: feature selection and discretization of numeric attributes," Proceedings of Seventh International Conference on Tools with Artificial Intelligence, 1995.pp. 388-391.
[38]Kononenko, I., "Estimating attributes: Analysis and extensions of RELIEF," Machine Learning: ECML-94 New York,: Springer Berlin, 1994, p.pp. 171-182.
[39]Hall, M. A., 1999,"Correlation-based feature selection for machine learning," Department of Computer Science, University of Waikato, Ph.D.
[40]Inza, I., P. Larrañaga, R. Etxeberria and Sierra, B., 2000, "Feature Subset Selection by Bayesian network-based optimization", Artificial Intelligence, vol. 123, pp. 157-184.
[41]Tang, E. K., Suganthan, P. N. and Yao, X., 2006, "Gene selection algorithms for microarray data based on least squares support vector machine", BMC Bioinformatics, vol. 7, pp. 95.
[42]Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M. and Haussler, D., 2000, "Support vector machine classification and validation of cancer tissue samples using microarray expression data", Bioinformatics, vol. 16, pp. 906-914, October 1, 2000.
[43]Huang, H.-L. and Chang, F.-L., 2007, "ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data", Biosystems, vol. 90, pp. 516-528, September-October,.
[44]Fix, E. and Hodges, J. L., "Discriminatory analysis nonparametric discrimination:Consistency properties," Technical Report, Randolph Field, USAF School of Aviation Medicine, Texas 21-49-004, 1951.
[45]Hsu, C. W. and Lin, C. J., 2002, "A Simple Decomposition Method for Support Vector Machines", Machine Learning, vol. 46, pp. 291-314.
[46]Lin, K. M. and Lin, C. J., 2003, "A study on reduced support vector machines", IEEE Transactions on Neural Networks, vol. 14, pp. 1449-1459.
[47]Kohavi, R., 1995, "A study of cross-validation and bootstrap for accuracy estimation and model selection," Proceedings of 14th International Joint Conference on Artificial Intelligence.pp. 1137-1143.
[48]Shen, Q., Shi, W. M. and Kong, W., 2008, "Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data", Computational Biology and Chemistry, vol. 32, pp. 53-60, February,.
[49]Oduntan, I. O., Toulouse, M., Baumgartner, R., Bowman, C., Somorjai, R. and Crainic, T. G., 2008, "A multilevel tabu search algorithm for the feature selection problem in biomedical data", Computers & Mathematics with Applications, vol. 55, pp. 1019-1033, March,.
[50]Elbeltagi, E., Hegazy, T. and Grierson, D., 2005, "Comparison among five evolutionary-based optimization algorithms", Advanced Engineering Informatics, vol. 19, pp. 43-53.
[51]Chao, O. and Weixing, L., 2006, "Comparison between PSO and GA for Parameters Optimization of PID Controller," Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, .pp. 2471-2475.
[52]Krink, T., Paterlini, S. and Resti, A., 2007, "Using differential evolution to improve the accuracy of bank rating systems", Computational Statistics & Data Analysis, vol. 52, pp. 68-87.
[53]Paterlini, S. and Krink, T., 2006, "Differential evolution and particle swarm optimisation in partitional clustering", Computational Statistics & Data Analysis, vol. 50, pp. 1220-1247.
[54]Talbi, E. G., Jourdan, L., Garcia-Nieto, J. and Alba, E., 2008, "Comparison of population based metaheuristics for feature selection: Application to microarray data classification," Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, 2008. .pp. 45-52.
[55]Kennedy, J. and Eberhart, R. C., 1997, "A discrete binary version of the particle swarm algorithm," Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, .pp. 4104-4108 vol.5.
[56]Xiong, M., Fang, X. and Zhao, J., 2001, "Biomarker identification by feature wrappers", Genome Res., vol. 11, pp. 1878-1887.
[57]Dudoit, S., Fridly, J. and Speed, T. P., 2002, "Comparison of discrimination methods for the classification of tumors using gene expression data", Journal of the American Statistical Association, vol. 97, pp. 77–87.
[58]Hanchuan, P., Fuhui, L. and Ding, C., 2005, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1226-1238.
[59]Yang, C. S., Chuang, L. Y. , Ke, C. H. , Yang, C. H. , 2008, "Boolean Binary Particle Swarm Optimization for Feature Selection," Proceedings of IEEE Congress on Evolutionary Computation 2008, Hong Kong, Jun. 1-6.
[60]Chuang, L. Y., Ke, Chao Hsuan, Yang, Cheng Hong, 2008, "A hybrid both filter and wrapper feature selection method for microarray classification," Proceedings of The International MultiConference of Engineers and Computer Scientists 2008, Hong Kong, Mar. 19-21.pp. 146-150.
[61]Marandi, A., Afshinmanesh, F., Shahabadi, M. and Bahrami, F., 2006, "Boolean Particle Swarm Optimization and Its Application to the Design of a Dual-Band Dual-Polarized Planar Antenna," Proceedings of IEEE Congress on Evolutionary Computation, 2006. CEC 2006,.pp. 3212-3218.
[62]Yang, C. S., Chuang, L. Y., Ke, C. H., and Yang, C. H., 2008, "Combined Shuffled Frog-Leaping and Genetic Algorithms for Gene Selection", Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 12, pp. 218-226.
[63]Staunton, J. E., Slonim, D. K., Coller, H. A., Tamayo, P., Angelo, M. J., Park, J., Scherf, U., Lee, J. K., Reinhold, W. O., Weinstein, J. N., Mesirov, J. P., Lander, E. S. and Golub, T. R., 2001, "Chemosensitivity prediction by transcriptional profiling", PNAS, vol. 98, pp. 10787-10792, September 11, 2001.
[64]Su, A. I., Welsh, J. B., Sapinoso, L. M., Kern, S. G., Dimitrov, P., Lapp, H., Schultz, P. G., Powell, S. M., Moskaluk, C. A., Frierson, H. F., Jr. and Hampton, G. M., 2001, "Molecular Classification of Human Carcinomas by Use of Gene Expression Signatures", Cancer Research, vol. 61, pp. 7388-7393, October 1, 2001.
[65]Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.-H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J. P., Poggio, T., Gerald, W., Loda, M., Lander, E. S. and Golub, T. R., 2001, "Multiclass cancer diagnosis using tumor gene expression signatures", PNAS, pp. 211566398, December 11, 2001.
[66]Pomeroy, S. L., P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaughlin, J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C. Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A., Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov, E. S. Lander and T. R. Golub, 2002, "Prediction of central nervous system embryonal tumour outcome based on gene expression", Nature, vol. 415, pp. 436-442.
[67]Nutt, C. L., Mani, D. R., Betensky, R. A., Tamayo, P., Cairncross, J. G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M. E., Batchelor, T. T., Black, P. M., von Deimling, A., Pomeroy, S. L., Golub, T. R. and Louis, D. N., 2003, "Gene Expression-based Classification of Malignant Gliomas Correlates Better with Survival than Histological Classification", Cancer Research, vol. 63, pp. 1602-1607, April 1, 2003.
[68]Armstrong, S. A., J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den Boer, M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub and Korsmeyer, S. J., 2001, "MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia", Nature Genetics, vol. 30, pp. 41-47.
[69]Bhattacharjee, A., W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J. Sugarbaker and Meyerson, M., 2001, "Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses", PNAS, vol. 98, pp. 13790-13795.
[70]Khan, J., J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson and P. S. Meltzer, 2001, "Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks", Nature medicine, vol. 7, pp. 673-679.
[71]Singh, D., P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub and Sellers, W. R., 2002, "Gene expression correlates of clinical prostate cancer behavior", Cell Press, vol. 1, pp. 203-209.
[72]Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last, K. W., Norton, A., Lister, T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C. and Golub, T. R., 2002, "Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning", Nature medicine, vol. 8, pp. 68-74.
[73]Jiang, M., Luo, Y. P. and Yang, S. Y., 2007, "Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm", Information Processing Letters, vol. 102, pp. 8-16.
[74]Yang, C. S., Chuang, L. Y. , Ke, C. H. , and Yang, C. H. , 2008, "A hybrid approach for selecting gene subsets using gene expression data," Proceedings of 2008 IEEE Conference on Soft Computing in Industrial Applications, Muroran, Jun. 25-27.
[75]Zheng, Y. L., Ma, L. H., Zhang, L. Y. and Qian, J. X., 2003, "On the convergence analysis and parameter selection in particle swarm optimization," Proceedings of International Conference on Machine Learning and Cybernetics, 2003.pp. 1802-1807 Vol.3.
[76]Hsu, C. W. and Lin, C. J., 2002, "A comparison of methods for multiclass support vector machines", IEEE Transactions on Neural Networks, vol. 13, pp. 415-425.
[77]Pardo, M. and Sberveglieri, G., 2005, "Classification of electronic nose data with support vector machines", Sensors and Actuators B: Chemical, vol. 107, pp. 730-737.
[78]Hall, M. A., 1998,"Correlation-based feature selection for machine learning," Department of Computer Science, University of Waikato, Ph.D Thesis.
[79]Chu, B., Kim, D., Hong, D., Park, J., Chung, J. T., Chung, J.-H. and Kim, T.-H., 2008, "GA-based fuzzy controller design for tunnel ventilation systems", Automation in Construction, vol. 17, pp. 130-136.
[80]Marano, G. C. and Quaranta, G., 2008, "Fuzzy-based robust structural optimization", International Journal of Solids and Structures, vol. 45, pp. 3544-3557.
[81]Saber, A. Y., Senjyu, T., Yona, A. and Funabashi, T., 2007, "Unit commitment computation by fuzzy adaptive particle swarm optimisation", Generation, Transmission & Distribution, IET, vol. 1, pp. 456-465.
[82]Bajpai, P. and Singh, S. N., 2007, "Fuzzy Adaptive Particle Swarm Optimization for Bidding Strategy in Uniform Price Spot Market", IEEE Transactions on Power Systems, vol. 22, pp. 2152-2160.
[83]Yu, J. S., Ongarello, S., Fiedler, R., Chen, X. W., Toffolo, G., Cobelli, C. and Trajanoski, Z., 2005, "Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data", Bioinformatics, vol. 21, pp. 2200-2209, May 15, 2005.
[84]Eckel-Passow, J. E., Oberg, A. L., Therneau, T. M., Mason, C. J., Mahoney, D. W., Johnson, K. L., Olson, J. E. and Bergen, H. R., III, 2006, "Regression analysis for comparing protein samples with 16O/18O stable-isotope labeled mass spectrometry", Bioinformatics, vol. 22, pp. 2739-2745, November 15, 2006.
[85]Rashid, M., Saha, S. and Raghava, G., 2007, "Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs", BMC Bioinformatics, vol. 8, pp. 337.
[86]Huang, W. L., Tung, C. W., Ho, S. W., Hwang, S. F. and Ho, S. Y., 2008, "ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization", BMC Bioinformatics, vol. 9, pp. 80.
[87]Degroeve, S., De Baets, B., Van de Peer, Y. and Rouze, P., 2002, "Feature subset selection for splice site prediction", Bioinformatics, vol. 18, pp. S75-83, October 1, 2002.
[88]Baten, A., Chang, B. C. H., Halgamuge, S. K. and Li, J., 2006, "Splice site identification using probabilistic parameters and SVM classification", BMC Bioinformatics, vol. 7, pp. S15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top