|
[1] J. Buck, 1988, Synchronous rhythmic flashing of fireflies, II. Q. Rev. Biol. 63, 265-289 [2] J. Carr, 1981, Applications of Centre Manifold Theory, Applied Mathematical Sciences, 35, Springer-Verlag, New York-Berlin. [3] T. Elmhirst and M. Golubitsky, 2006, Nilpotent Hopf bifurcations in coupled cell systems, J. Appl. Dynam. Sys. 5, 205-251. [4] B. Fiedler, V. Flunkert, P. Hovel, and E. Scholl, 2010, Delay stabilization of periodic orbits in coupled oscillator systems, Phil. Trans. R. Soc. A 368, 319-341. [5] M. Golubitsky and D.G. Schaeffer, 1984, Singularities and Groups in Bifurcation Theory: Vol. I, Appl. Math. Sci. 51, Springer-Verlag, New York. [6] M. Golubitsky and D.G. Schaeffer, 1988, Singularities and Groups in Bifurcation Theory: Vol. II, Appl. Math. Sci. 69, Springer-Verlag, New York. [7] M. Golubitsky, M. Nicol, and I. Stewart, 2004, Some curious phenomena in coupled cell networks, J. Nonlinear Sci. 14 (2), 207-236. [8] M. Golubitsky and I. Stewart, 2006, Nonlinear dynamics of networks: The groupoid formalism, Bull. Amer. Math. Soc. (N.S.), 43, 305-364. [9] M. Golubitsky, L.-J. Shiau, C. Postlethwaite, and Y. Zhang, 2009, The feed-forward chain as a lter-ampliler motif, in Coherent Behavior in Neuronal Networks, Springer Ser. Comput. Neurosci. 3, K. Josic, M. Matias, R. Romo, and J. Rubin, eds., Springer-Verlag, New York., 95-120. [10] M. Golubitsky and C. Postlethwaite, 2012, Feed-forward networks, center manifolds, and forcing, Discrete Contin. Dyn. S. Series A 32, 2913-2935. [11] B. D. Hassard, and Y.-H. Wan, 1978, Bifurcation formulae derived from center manifold theory, J. Math. Anal. and Applics. 63, 297-312. [12] B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, 1981, Theory and applications of Hopf bifurcation, Cambridge, Cambridge University Press. [13] L. Herrgen, S. Ares, L. G. Morelli,C. Schroter, F. Julicher, and A. C. Oates, 2010, Intercellular coupling regulates the period of the segmentation clock, Current Biology 20, 1244-1253. [14] Z. Jing, Z. Liu, and J. Shen, 1994, Hopf bifurcation and other dynamical behaviors for a four order differential equation in models of infectious disease, Acta Math. Appl. Sinica. New Series. [15] Y. Kuramoto, 1984, Chemical oscillations, waves and turbulence, Berlin, Springer Verlag. [16] Y. A. Kuznetsov, 2004, Elements of applied bifurcation theory (3rd ed.), Appl. Math. Sci. 112, Springer-Verlag, New York. [17] K.-L. Liao, C.-W. Shih, and J.-P. Tseng, Synchronized oscillations in a mathematical model of segmentation in zebrash, Nonlinearity 25 (2012), pp. 869-904. [18] J. E. Marsden and M. McCracken, 1976, The Hopf bifurcation and its applications, Appl. Math. Sci. 19, Springer-Verlag, New York. [19] L. G. Morelli, S. Ares, L. Herrgen, C. Schroter, F. Julicher, and A. C. Oates, 2008, Delayed coupling theory of vertebrate segmentation, HFSP Journal, Vol. 3, No. 1, 55-66. [20] L. Perko, 2001, Differential equations and dynamical systems (3rd ed.), Texts in Appl. Math.. 7, Springer-Verlag, New York. [21] H. P. Schuster, and G. Wagner, 1989, Mutual entrainment of two limit cycle oscillators with time delayed coupling, Progress of Theoretical Physics 81, 939-945. [22] A. F. Taylor, M. R. Tinsley, F.Wang, Z. Huang, and K. Showalter, 2009, Dynamical quorum sensing and synchronization in large populations of chemical oscillators, Science 323, 614-617. [23] T. J. Walker, 1969, Acoustic synchrony: Two mechanisms in the snowy tree cricket, Science 166, 891-894. [24] A. T. Winfree, 1967, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16, 15-42. [25] H. J. Wuunsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, Erzgraber, H., Peil, M., W. Elsasser, and I. Fischer, 2005, Synchronization of delay-coupled oscillators: A study of semiconductor lasers, Phys. Rev. Lett. 94, 163901. [26] W. Wu, and J. Cao, 2005, Hopf bifurcation and stability of periodic solutions for Van der Pol equation with time delay, Nonlinear Analysis. 62, 141-165. [27] S. Yeung, and S. Strogatz, 1999, Time delay in the Kuramoto model of coupled oscillators, Phys. Rev. Lett. 82, 648V-651.
|