跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠維
研究生(外文):Chen, Kuan-Wei
論文名稱:耦合系統中週期解之週期與振幅
論文名稱(外文):Periods and Amplitudes of Oscillations in Coupled Systems
指導教授:石至文
指導教授(外文):Shih, Chih-Wen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系數學建模與科學計算碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:76
中文關鍵詞:耦合系統Hopf分支定理同步破壞Hopf分支前饋鍊
外文關鍵詞:coupled systemsHopf bifurcation theoremsynchrony-breaking Hopf bifurcationfeed-forward chain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們探討有關耦合系統中週期解之週期與振幅。這份研究的動機主要來自我們對於生物時鐘的數學模型動態行為方面的興趣。在這論文中,我們耦合兩個微分方程系統,利用Hopf分支定理說明耦合系統週期解是存在的。觀察耦合系統週期與未耦合前子系統週期之間的關係。我們同時也探討了耦合系統週期解之振幅。我們討論有關前饋鍊上的週期解;在文獻中Golubitsky討論當三個細胞前饋鍊發生同步破壞Hopf分支時,產生的週期解振幅就會放大。我們針對這個結果做了整理,並且將其推廣到四個細胞的前饋鍊。最後,我們給予一些數值模擬來展現理論結果。
In this thesis, we study the periods and amplitudes in coupled oscillations. The study is motivated by some interesting investigations in mathematical models on biological clocks. Herein, we couple two oscillators, and use the Hopf bifurcation theorem to show that the coupled oscillation is sustained. We observe the relation between the collective period and the isolated individual periods. We also study the amplitudes of oscillations in coupled systems. In particular, we discuss the oscillations in three-cell feed-forward by Golubitsky and collaborators, where synchrony-breaking Hopf bifurcations may happen in some feed-forward network, and amplify the periodic signals. We summarize these results, and extend the study to the variation of amplitudes in a four-cell feed-forward chain. Finally, we give some numerical simulation to illustrate our results.
Contents
1 Introduction 1
2 Hopf bifurcation theorem 3
3 Periods of oscillations in coupled systems 12
3.1 Coupled oscillators in normal form . . . . . . . . . . . . . . . . . . . 16
3.1.1 Uni-directional, one-component coupling . . . . . . . . . . . . 17
3.1.2 Uni-directional, two-component coupling . . . . . . . . . . . . 20
3.1.3 Bi-directional, one-component coupling . . . . . . . . . . . . . 25
3.1.4 Bi-directional, two-component coupling . . . . . . . . . . . . . 29
3.2 Coupled Van der Pol's equations . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Uni-directional, one-component coupling . . . . . . . . . . . . 34
3.2.2 Uni-directional, two-component coupling . . . . . . . . . . . . 39
3.2.3 Bi-directional, one-component coupling . . . . . . . . . . . . . 44
3.2.4 Bi-directional, two-component coupling . . . . . . . . . . . . . 48
4 Amplitudes of oscillations in feed-forward chain 55
4.1 Three-cell feed-forward chain . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Four-cell feed-forward chain . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Numerical simulations and examples . . . . . . . . . . . . . . . . . . 63
5 Discussion and Conclusion 69
[1] J. Buck, 1988, Synchronous rhythmic flashing of fireflies, II. Q. Rev. Biol. 63, 265-289
[2] J. Carr, 1981, Applications of Centre Manifold Theory, Applied Mathematical Sciences, 35, Springer-Verlag, New York-Berlin.
[3] T. Elmhirst and M. Golubitsky, 2006, Nilpotent Hopf bifurcations in coupled cell systems, J. Appl. Dynam. Sys. 5, 205-251.
[4] B. Fiedler, V. Flunkert, P. Hovel, and E. Scholl, 2010, Delay stabilization of periodic orbits in coupled oscillator systems, Phil. Trans. R. Soc. A 368, 319-341.
[5] M. Golubitsky and D.G. Schaeffer, 1984, Singularities and Groups in Bifurcation Theory: Vol. I, Appl. Math. Sci. 51, Springer-Verlag, New York.
[6] M. Golubitsky and D.G. Schaeffer, 1988, Singularities and Groups in Bifurcation Theory: Vol. II, Appl. Math. Sci. 69, Springer-Verlag, New York.
[7] M. Golubitsky, M. Nicol, and I. Stewart, 2004, Some curious phenomena in coupled cell networks, J. Nonlinear Sci. 14 (2), 207-236.
[8] M. Golubitsky and I. Stewart, 2006, Nonlinear dynamics of networks: The groupoid formalism, Bull. Amer. Math. Soc. (N.S.), 43, 305-364.
[9] M. Golubitsky, L.-J. Shiau, C. Postlethwaite, and Y. Zhang, 2009, The feed-forward chain as a lter-ampliler motif, in Coherent Behavior in Neuronal Networks, Springer Ser. Comput. Neurosci. 3, K. Josic, M. Matias, R. Romo, and J. Rubin, eds., Springer-Verlag, New York., 95-120.
[10] M. Golubitsky and C. Postlethwaite, 2012, Feed-forward networks, center manifolds, and forcing, Discrete Contin. Dyn. S. Series A 32, 2913-2935.
[11] B. D. Hassard, and Y.-H. Wan, 1978, Bifurcation formulae derived from center manifold theory, J. Math. Anal. and Applics. 63, 297-312.
[12] B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, 1981, Theory and applications of Hopf bifurcation, Cambridge, Cambridge University Press.
[13] L. Herrgen, S. Ares, L. G. Morelli,C. Schroter, F. Julicher, and A. C. Oates, 2010, Intercellular coupling regulates the period of the segmentation clock, Current Biology 20, 1244-1253.
[14] Z. Jing, Z. Liu, and J. Shen, 1994, Hopf bifurcation and other dynamical behaviors for a four order differential equation in models of infectious disease, Acta Math. Appl. Sinica. New Series.
[15] Y. Kuramoto, 1984, Chemical oscillations, waves and turbulence, Berlin, Springer Verlag.
[16] Y. A. Kuznetsov, 2004, Elements of applied bifurcation theory (3rd ed.), Appl. Math. Sci. 112, Springer-Verlag, New York.
[17] K.-L. Liao, C.-W. Shih, and J.-P. Tseng, Synchronized oscillations in a mathematical model of segmentation in zebrash, Nonlinearity 25 (2012), pp. 869-904.
[18] J. E. Marsden and M. McCracken, 1976, The Hopf bifurcation and its applications, Appl. Math. Sci. 19, Springer-Verlag, New York.
[19] L. G. Morelli, S. Ares, L. Herrgen, C. Schroter, F. Julicher, and A. C. Oates, 2008, Delayed coupling theory of vertebrate segmentation, HFSP Journal, Vol. 3, No. 1, 55-66.
[20] L. Perko, 2001, Differential equations and dynamical systems (3rd ed.), Texts in Appl. Math.. 7, Springer-Verlag, New York.
[21] H. P. Schuster, and G. Wagner, 1989, Mutual entrainment of two limit cycle oscillators with time delayed coupling, Progress of Theoretical Physics 81, 939-945.
[22] A. F. Taylor, M. R. Tinsley, F.Wang, Z. Huang, and K. Showalter, 2009, Dynamical quorum sensing and synchronization in large populations of chemical oscillators, Science 323, 614-617.
[23] T. J. Walker, 1969, Acoustic synchrony: Two mechanisms in the snowy tree cricket, Science 166, 891-894.
[24] A. T. Winfree, 1967, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16, 15-42.
[25] H. J. Wuunsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, Erzgraber, H., Peil, M., W. Elsasser, and I. Fischer, 2005, Synchronization of delay-coupled oscillators: A study of semiconductor lasers, Phys. Rev. Lett. 94, 163901.
[26] W. Wu, and J. Cao, 2005, Hopf bifurcation and stability of periodic solutions for Van der Pol equation with time delay, Nonlinear Analysis. 62, 141-165.
[27] S. Yeung, and S. Strogatz, 1999, Time delay in the Kuramoto model of coupled oscillators, Phys. Rev. Lett. 82, 648V-651.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top