跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林怡蒼
研究生(外文):LIN, YI-CANG
論文名稱:利用光譜技術探討1-芳香基偶氮-2-萘酚衍生物的互變異構化
論文名稱(外文):Study on The Tautomerization of 1-Aryldiazo-2-naphthalenol Derivatives by Using The Spectroscopic Technique
指導教授:林孝道丁美芳
指導教授(外文):LIN, SHAW-TAODING, MEI-FANG
口試委員:黃克峰李傳珍楊雅甄
口試委員(外文):HUANG, KEN-FENGLEE, CHEN-CHUANYANG, YA-CHEN
口試日期:2016-07-26
學位類別:博士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:152
中文關鍵詞:1-芳香基偶氮-2-萘酚互變異構弛豫Hammett常數
外文關鍵詞:1-aryldiazo-2-naphthalenoltautomerizationrelaxationHammett constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
藉由核磁共振光譜技術研究取代基對1-芳香基偶氮-2-萘酚系列化合物互變異構化時的影響。從13C化學位移的變動中發現,化合物C(2)位置受到苯環上取代基性質影響最為敏感,其化學位移變化值達24 ppm。因此,由C(2)化學位移的變動並從取代基化學位移值與自由能對Hammett常數(σ+)的線性關係來探討取代基效應。兩種方法中皆得到負斜率值,分別為ρ=-8.74與ρ=-1.38,顯示拉電子基團有利於腙形式異構物形成。藉由1-苯基偶氮-2-萘酚化合物在10種溶劑中C(2)位置的化學位移變化探討溶劑效應,而溶劑包含質子提供者、質子接受者與芳香烴類等。推電子特性的取代基對溶劑性質更為敏感,更利於偶氮形式異構物形成。而從動態核磁共振技術得到的自由能顯示,拉電子特性取代基利於腙形式異構物的形成。在弛豫實驗中,化合物上的碳原子受取代基影響不大。而黏度與弛豫時間則呈反比關係。
在質譜上,利用電子電離質譜研究系列化合物碎裂裂片來探討取代基效應。藉由分子離子與碎片離子間的離子強度比例[Imolecular ion/(I171amu+I143amu+I115amu)]與Hammett常數的線性關係來探討在碎裂時的取代基效應。而從此方法得到負斜率值為ρ=-0.778,顯示拉電子基團的分子離子不穩定。並在碎裂過程中發現一個長距離的氫轉移現象產生。

The substituent effect on azo-hydrazone tautomerization of 1-aryldiazo-2-naphthalenol is studied by means of NMR and MS analysis. Among the 13C chemical shifts, the C(2) of this series compound is the most sensitive to the variation in the nature of substituent on the phenyl ring. Therefore, the variation in the chemical shifts of C(2) is used to probe the substituent effect by using the substituent chemical shifts and free energy vs. Hammett’s constant (σ+). Both methods give a negative correlation slope, which are ρ=-8.74 and ρ=-1.38 , indicating the electron-withdrawing groups favor the hydrazone tautomer form. The effect on the chemical shifts of C(2) of 1-phenyldiazo-2-naphthalenol in ten solvents can be classified as the solvent with a proton-donor, proton-acceptor and arenes system. The substituent with electron-donating character is more sensitive to the nature of solvent and it favors the azo form. Free energy obtained from the dynamic NMR technique indicates the tautomerization favors the hydrazone-form for the substituent with electron-withdrawing character. The relaxation time of carbon are slight affected by the size of substituents. In the viscosity study, an inverse-law relationship between relaxation times and viscosity was observed.
An electron-ionization (EI) mass spectra of a series of 1-aryldiazo-2-naphthalenol was obtained for studying the substituent effect on the fragmentation. The correlation between the ratio, molecular ion and fragment ion, and Hammett’s constants is applied to examine the effect of the substituent on the fragmentation. The negative correction between the ratio, Imolecular ion/(I171amu + I143amu + I115amu), and Hammett’s constants, which is ρ=-0.778, indicates an electron-withdrawing group destabilized the molecular ion. An unusual long-range hydrogen transfer demonstrates an important role in the fragmentation process.

圖目錄 Ⅳ
表目錄 Ⅵ
附圖目錄 Ⅷ
中文摘要 XIV
Abstract XVI
第一章、緒論 1
第一節、前言 1
第二節、酮-烯醇互變異構 (Keto-Enol Tautomerism) 6
第三節、Hammett方程式 11
第四節、核磁共振弛豫理論 14
一、自旋-晶格弛豫 (Spin-Lattice Relaxation) 16
二、自旋-自旋弛豫 (Spin-Spin Relaxation) 17
三、T1的測量方法 18
四、T2的測量方法 20
第五節、質譜術的簡介 22
一、質譜儀的歷史 22
二、質譜儀的簡介 22
第六節、研究動機 28
第二章、實驗部分 30
一、[NMP]+[CH3SO3]- ,離子液體的製備 30
二、1-(4′-甲基苯偶氮)-2-萘酚化合物(7)製備 31
三、1-(4′-氨基苯偶氮)-2-萘酚化合物(4)製備 36
四、1-(2′-甲氧羰基苯偶氮)-2-萘酚化合物(15)製備 38
五、1-(4′-乙醯胺基苯偶氮)-2-萘酚化合物(16)製備 39
第三章、結果與討論 41
第一節、核磁共振光譜部分 41
一、取代基效應對13C化學位移的影響 41
二、溶劑效應對13C化學位移的影響 48
三、互變異構的定量分析 52
四、熱力學分析 57
五、取代基效應對弛豫時間(T1)的影響 63
六、溶劑效應對弛豫時間(T1)的影響 65
七、分子的轉動 67
八、溶氧效應對弛豫時間的影響 70
第二節、質譜部分 72
一、一般裂解過程 72
二、取代基效應影響 78
三、鄰位效應(Ortho effect) 82
第四章、結論 84
第五章、儀器與藥品 86
一、儀器 86
二、藥品 86
第六章、參考文獻 89
第七章、附圖 102


Chung, K. T.; Fulk, G. E.; Egan, M. “Reduction of azo dyes by intestinal anaerobes”. Appl Environ Microbiol. 1978, 35, 558-562.
Kishimoto, S.; Kitahara, S.; Manabe, O.; Hiyama, H. “Studies on coupling reactions of 1-naphthol. 6. Tautomerism and dissociation of 4-arylazo-1-naphthols in various solvents” J. Org. Chem.1978, 43, 3882-3886.
Hihara, T.; Okada, Y.; Morita, Z. “Azo-hydrazone tautomerism of phenylazonaphthol sulfonates and their analysis using the semiempirical molecular orbital PM5 method” Dyes & Pigments, 2003, 59, 25-41.
Stoyanov, S.; Antonov, L.; Soloveytchik, B.; Petrova, V. “Quantitative analysis of tautomeric equilibrium in 1-phenylazo-4-naphthols- a new approach”, Dyes & Pigments, 1994, 26, 149-158.
Stoyanov, S.; Antonov, L. “Quantitative analysis of azo-quinonehydrazone tautomeric quilibrium”, Dyes & Pigments, 1989, 10, 33-45.
Reeves, R. L.; Kaiser, R. S. “Selective solvation of hydrophobic ions in structured solvents. Azo-hydrazone tautomerism of azo dyes in aqueous organic solvents”, J. Org. Chem. 1970, 35, 3670-3675.
Hadži, D. “Absorption spectra and structure of some solid hydroxyazo-compounds”, J. Chem. Soc. 1956, 2143-2150.
Burawoy, A.; Salem, A. G.; Thompson, A. R. “The nature of the internal hydrogen bond. Part I. Tautomerism of 1-arylazo-2-naphthols”, J. Chem. Soc. 1952, 4793-4997.
Morgan, K. J. “Infrared spectra and structure of arylazonaphthols”, J. Chem. Soc. 1961, 2151-2159.
Saeva, F. D. “Tautomeric Behavior Comparison of 4-Phenylazo-1-naphtol and 1-Phenylazo-2-napthol systems by nucear magnetic resonance”, J. Org. Chem. 1971, 24, 3842-3843.
Kuhn, R.; Bar, F. Justus Liebigs Ann, Chem. 1935, 143, 616.
Fisher, E.; Frei, Y, F. “Tautomerism and geometrical isomerism of arylazo-phenols and -naphthols. Part I. 4-phenylazo-1-naphthol”, J. Chem. Soc. 1959, 3159-3163.
Lyčka, A.; Šnobl, D.; Macháček, V.; Večeřa, M. “15N NMR study of azo-hydrazone tautomerism of 15N-labelled azo dyestuffs”, Org. Magn.Reson. 1981, 16, 17-19.
Harris, R. K.; Jonsen, P.; Packer, K. J.; Campbell, C. D. “Carbon-13 NMR of solid phenylazo-2-naphthols: Tautomerism and (13C, 14N) residual dipolar coupling”, Magn, Reson. Chem. 1986, 24, 977-983.
Lyčka, A.; Šnobl, D,; Macháček, V.;Večeřa, M. “13C NMR spectra of non-labelled and 15N-mono-labelled azo dyes”, Org. Magn. Reson. 1981, 15, 390-393.
Berrie, A. H.; Hampson, P.; Longworth, S.W.; Mathias, A. “Tautomerism in 1-phenylazo-2-naphthols by use of nitrogen-14 nuclear magnetic resonance data”, J. Chem. Soc. B. 1968, 1308-1310.
Bekárek, Y.; Rothschein, K.; Vetešník, P.; Večeřa, M. “Estimation of azo-hydrazo tautomeric equilibrium in ortho-hydroxy-azocompounds by N.M.R.”, Tetrahedron Lett. 1968, 34, 3711-3713.
Lyčka, A. “19F-NMR study of azo-hydrazone tautomerism of some fluorine-containing azo dyes”, Dyes & Pigments 1990, 12, 179-185.
Cheon, K. S.; Park, Y. S.; Kazmaier, P. M.; Buncel, E. “Studies of azo–hydrazone tautomerism and H-bonding in azo-functionalized dendrimers and model compounds”, Dyes & Pigments 2002, 53, 3-14.
Lee, C. C.; Yang, Y. C.; Lia, H. J.; Lin, S. T. “Formation of ionized arylamines upon electron ionization of N-aryl-methyl-isoxazole-4-carboxamides: correlation with Hammett's constants and arylamine pKb's Mass spectra of arylmethylisoxazolecarboxamides”, J. Mass Spectrom. 2011, 46, 1131-1134.
Ward, C. H. “Keto-enol tautomerism of ethyl acetoacetate: Experiment in homogeneous equilibrium”, J. Chem. Educ. 1962, 39, 95-96.
Meyer, K.H.; Kappelmeier, P. Ann. 1911, 380, 212-218.
Jarrett, H. S.; Sadler, M. S.; Shoolery, J. N. “Nuclear magnetic resonance signals from a tautomeric mixture”, J. Chem. Phys. 1953, 21, 2092-2093.
Reeves, L. W. “Nuclear magnetic resonance measurements in solutions of acetylacetone: the effect of solvent interactions on the tautomeric equilibrium”, Can. J Chem. 1957, 35, 1351-1365.
Claude, G. P. Comfit. rend. 1960, 250, 2547-2549.
Drexler, E. J.; Field, K. W. “An NMR study of keto-enol tautomerism in beta-dicarbonyl compounds”, J. Chem. Educ. 1976, 53, 392-393.
Capponi, M.; Gut, I. G.; Hellrung, B.; Persy, G.; Wirz, J. “Ketonization equilibria of phenol in aqueous solution”, Can. J. Chem. 1999, 77, 605-613.
Riechart, C.; Welton, T. “Solvents and solvent effects in Organic Chemistry”, Fourth Edition. 2011.
Predrag, N.; Danko, Š.; Sanja, S.; Dražen, V. T. “Substituent, temperature and solvent effects on keto-enol equilibrium in symmetrical pentane-1,3,5-triones. Nuclear magnetic resonance and theoretical Studies”, Croat. Chem. Acta. 2000, 73, 1153-1170.
Nikolaus, H.; Wolfram, K.; Gernot F.; Helmut, S. “Substituent effects on neutral and ionized carbon-carbon and carbon-oxygen double bonds and their implications for the stability order of keto/enol tautomers”, J. Am. Chem. Soc. 1986, 108, 593-600.
Saunders, W. H. “Ab Initio investigation of the acetaldehyde-to-acetaldehyde enolate proton transfer”, J. Am. Chem. Soc. 1994, 116, 5400-5404.
Keeffe, J. R.; Kresge, A. J.; Schepp, N. P. “Generation of simple enols by photooxidation. keto-enol equilibrium constants of some aliphatic systems in aqueous solution”, J. Am. Chem. Soc. 1988, 110, 1993-1995.
Keeffe, J. R.; Kresge, A. J.; Schepp, N. P. “Keto-enol equilibrium constants of simple monofunctional aldehydes and ketones in aqueous solution”, J. Am. Chem. Soc. 1990, 112, 4862-4868.
Su, C. C.; Lin, C. K.; Wu, C. C.; Lien, M. H. “Ab Initio study on the keto−enol tautomerism of the α-substituted acetaldehydes XH2CCHO (X = H, BH2, CH3, NH2, OH, F, CN, NC, and Cl): Comparison with the tautomerism in α-substituted acetaldimines and acetyl derivatives”, J. Phys. Chem. A 1999, 103, 3289-3293.
Patricia, P.; Alejandro, T. L. “Characterization of keto-enol tautomerism of acetyl derivatives from the analysis of energy, chemical potential, and hardness”, J. Phys. Chem. A 2000, 104, 1557-1562.
Parr, R. G.; Yang, W. “Density Functional Theory of Atoms and Molecules”; Oxford University Press: New York, 1989.
Pearson, R. G. “Chemical Hardness”; Wiley-VCH: New York, 1997.
Sen, K. D. “Structure and Bonding 80: Chemical Hardness”, 1993.
Rodríguez-Santiago, L.; Vendrell, O.; Tejero, I.; Sodupe, M.; Bertran, J. “Solvent-assisted catalysis in the enolization of acetaldehyde radical cation”, Chem. Phys. Lett. 2001, 334, 112-118.
Hammett, L. P. “The effect of structure upon the reactions of organic compounds. Benzene derivatives”, J. Am. Chem. Soc. 1937, 59, 96-103.
Hansch, C.; Leo, A.; Taft, R. W. “A survey of Hammett substituent constants and resonance and field parameters”, Chem. Rev. 1991, 91, 165-195.
Bloch, F.; Hansen, W. W.; Packard. M. “Nuclear induction”, Phys. Rev. 1946, 69, 127.
Bloembergen, N.; Purcell, E. M.; Pound, R. V. “Relaxation effects in nuclear magnetic resonance absorption”, Phys. Rev. 1948, 73, 679.
Solomon, I. “Relaxation processes in a system of two spins”, Phys. Rev. 1955, 99, 559.
Redfield, A. G. “On the theory of relaxation processes”, IBM J. Res. Develop, 1957, 1, 19.
Redfield, A. G. “The theory of relaxation processes”, Adv. Magn. Reson. 1965, 1, 1.
Abragam, A. “Principles of Nuclear Magnetism.”; Oxford University Press: Oxford. 1983.
Cavanagh, J.; Fairbrother, W. J.; Palmer III, A. G.; Skelton, N. J. “Protein NMR Spectroscopy : Principles and Practice”, Academic Press, San Diego, 1996.
Vold, R. L.; Waugh, J. S.; Klein, M. P.; Phelps, D. E. “Measurement of spin relaxation in complex systems”, J. Chem. Phys. 1968, 48, 3831.
Levitt, M. H. “Spin Dynamics: Basics of Nuclear Magnetic Resonance”, John Wiley & Sons, New York, 2001.
Carr, H. Y; Purcell, E. M. “Effects of diffusion on free precession in nuclear magnetic resonance experiments”, Phys. Rev. 1954, 94, 630.
Meiboom, S.; Gill, D. “Modified spin‐echo method for measuring nuclear relaxation times”, Rev. Sci. Instrum. 1958, 29, 688.
Thomson, J. J. “The popular science monthly. Some future applications of the method of positive rays”, 1913, 512-624, (Online Book).
Dempster, A. J. “A new method of positive ray analysis”, Physical Review, 1918, 11, 316–325.
質譜分析技術專輯,1992,行政院國家科學委員會精密儀發展中心.
Douglas A. S.; Holler, F. J.; Stanley R. C. “Principles of Instrumental Analysis(ISE) sixth edition”, Thomson Books/Cole, Belmont, CA, 2007.
Olivieri, A. C.; Wilson, R. B.; Paul, I. C.; Curtin, D. Y. “Carbon-13 NMR and x-ray structure determination of 1-(arylazo)-2-naphthols. Intramolecular proton transfer between nitrogen and oxygen atoms in the solid state”, J. Am. Chem. Soc. 1989, 111, 5525-5532.
Gelbcke, M.; Masiala-tsobo, C.; Parmentier, F.; Declerck-grimee, R. “Spectres RMN-13C de quelques colorants azonaphtalene sulfonates”, Anal. Lett. 1980, 13, 975-984.
Hansen, P. E.; Lyčka, A. “Carbon–carbon coupling constants of 1-phenylazo-2-naphthol and 2-phenylazo-1-naphthol obtained by the SEMINA-1 technique”, Magn, Reson. Chem. 1986, 24, 772-776.
Alarcón, S. H.; Olivieri, A. C.; González-Sierra, M. “13C NMR spectroscopic and AM1 study of the intramolecular proton transfer in anils of salicylaldehyde and 2-hydroxynaphthalene-1-carbaldehyde”, J. Chem. Soc. Perkin Trans 2, 1994, 1067-1070.
Bekárek, V.; Dobáš, J.; Socha, J.; Vetešník, P.; Večeřa, M. “Reactivity of organic azo-compounds. X. NMR study on azo-hydrazone tautomeric equilibrium in hydroxyazo-compounds”, Collection Czechoslovak. Chem. Commun. 1970, 35, 1406-1414.
Lin, L. H.; Lee, C. C.; Ding, M.F.; Lin, S. T. “NMR analysis of substituent effect of arymethylene-malononitriles and malonates”, J. Chin. Chem. Soc. 2014, 61, 1056-1064.
Nedeltcheva, D.; Kurteva, V.; Damyanova, B.; Popov, S. “Gas-phase tautomerism in 1-phenylazonaphthalene-4-ol: Verification of the responses of individual tautomers”, Rapid Commun. Mass Spectrom. 2009, 23, 1724-1734.
Martiskainen, O.; Gawinecki, R.; Ośmiałowski, B.; Wiinamäki, K.; Pihlaja, K. “Electron ionization mass spectra and tautomerism of substituted 2-phenacylquinolines”, Rapid Commun. Mass Spectrom. 2009, 23, 1075-1084.
Nedeltcheva, D.; Kurteva, V.; Topalova, I. “Gas-phase tautomerism in hydroxy azo dyes-from 4-phenylazo-1-phenol to 4-phenylazo-anthracen-1-ol”, Rapid Commun. Mass Spectrom. 2010, 24, 714-720.
Tong, X.; Li, Y. “Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural Catalyzed by Brønsted-acidic ionic liquids”, ChemSusChem 2010, 3, 350-355.
Barbero, M.; Crisma, M.; Degani, I.; Fochi, R.; Perracino, P. “New ary arenediazonium salts, stabilized to an exceptionally high degree by the anion of o-benzenedisulfonmide”, Synthesis 1998, 1171-1175.
Paebumrung, P.; Petsom, A.; Thamyongkit, P. “Cardanol-based bis(azo) dyes as a gasoline 91 colorant”, J. Am. Oil. Chem. Soc. 2012, 89, 321-328.
Mohammad, M.; Fatemeh, Z.; Alireza, H. “A new nano silica gel supported by thionyl chloride as a solid acid for the efficient diazotization of aniline derivatives: Application and synthesis of azo dyes”, E.-J. Chem. 2012, 9, 1042-1046.
Reynolds, W. F.; Gibbs, V. G.; Plavac, N. “An investigation into the origins of polar substituent effects upon 19F chemical shifts, using 4-substituted β,β-difluorostyrenes”, Can. J. Chem. 1980, 58, 839-845.
Happer, D. A. R.; Steenson, B. E. “ Side-chain 13C nuclear magnetic resonance shifts in ring-substituted styrenes. The effect of β-substituents on β-carbon shifts”, J. Chem. Soc. Perkin Trans. 2 1988, 19-24.
Crist, D. R.; Jorden, G. J.; Moore, D. W.; Hashmall, J. A.; Borsetti, A. P.; Turujman, S. A. “Relative conjugative abilities of three-membered-ring heterocycles with benzene based on carbon-13 and nitrogen-15 NMR”, J. Am. Chem. Soc. 1983, 105, 4136-4142.
Lin, L. H.; Lee, C. C.; Ding, M. F.; Lin, S. T. “NMR analysis of substituent effect of arymethylene-malononitriles and malonates”, J. Chin. Chem. Soc. 2014, 61, 1056-1064.
Lin, S. T.; Lee, C. C.; Liang, D.W. “Analysis of substituent effects on C-13 NMR parameters of substituted arylacetylene derivatives. Linear free energy relationships and PM3 semiempirical calculations”, Tetrahedron 2000, 56, 9619.
Pschirer, N. G.; Bunz, U. H. F. “Alkyne metathesis with simple catalyst systems: High yield dimerization of propynylated aromatics; scope and limitations”, Tetrahedron Lett. 1999, 40, 2481-2484.
Dawson, D. A.; Reynolds, W. F. “Investigations of substituent effects by nuclear magnetic resonance spectroscopy and all-valence electron molecular orbital calculations. IV. 4-Substituted phenylacetylenes”, Can. J. Chem. 1975, 53, 373-382.
Lin, S. T.; Lee, C. C.; Wu, E. C. “Preparation and 13C NMR study on 1-aryl-3,3-difluoro-2-(phenylethynyl)cyclopropenes: Long distance Hammett substituent effect”, Tetrahedron 2008, 64, 5103-5106.
Buckingman, A. D. “Chemical shifts in the nuclear magnetic resonance spectra of molecules containing polar groups”, Can.J. Chem. 1960, 38, 300-307.
Abid, M. A. R.; Khanzada, A. W. K. “Carbon-13 chemical-shifts in hexamethyldisilazane in various nonaromatic solvents and effect of van der Waals interaction on these shifts”, J. Chem. Soc. Pak. 1991, 13, 181-184.
Tiffon, B.; Doucet, J. “Effet de solvant en résonance magnétique nucléaire de 13C. I. Cas d'un soluté apolaire: n-pentane”, Can. J. Chem. 1976, 54, 2045-2058.
Moreau-Descoings, M. C.; Goethals, G.; Seguin, J. P.; Doucet, J. P. “Measurements of actual association 13C shifts: medium effects on the TMS carbons”, Spectrochim. Acta. PartA. 1987, 43, 17-20.
De Kowalewski, D, G.; De Los Santos, C.; Marceca, E. “Use of an internal reference in 13C chemical shift measurements”, Magn. Res. Chem. 1990, 28, 1-4.
Rummens, Frans H. A. “On the use of the Bayliss-McRae dispersion model in NMR solvent effects”, Chem. Phys. Let. 1975, 31, 596-598.
Levy, G. C.; Cargioli, J. D.; Anet, F. A. L. “Carbon-13 spin-lattice relaxation in benzene and substituted aromatic compounds”, J. Am. Chem. Soc. 1973, 95, 1527-1535.
Gaemers, S.; Elsevier, C. J. “NMR of biomolecules in low viscosity, liquid CO2”, Chem. Phys. Lett. 1999, 301, 138-144.
Singh, A. K. “Mutual viscosity and NMR spin–lattice relaxation time in some polar molecules”, Phys. Chem. Liquid. 2012, 50, 523-529.
Lenchenkov, V.; She, C.; Lian, T. “Vibrational relaxation of CN stretch of pseudo-halide anions (OCN-, SCN-, and SeCN-) in polar solvents”, J. Phys. Chem. B 2006, 110, 19990-19997.
Grau, E.; Broyer, J. P.; Boisson, C.; Spitz, R.; Montell, V. “Unusual activation by solvent of the ethylene free radical polymerization”, Polym. Chem. 2011, 2, 2328-2333.
Huntress, W. T. Jr. “Effects of anisotropic molecular rotational diffusion on nuclear magnetic relaxation in liquids”, J. Chem. Phys. 1968, 48, 3524.
Siahaan, P.; Radiman, C. L.; Rahayu, S. I.; Martoprawiro, M. A.; Ziessow, D. “Molecular interaction between benzonitrile and hexamethylphosphoric triamide by 13C nmr T1 relaxation time studies and ab initio qm calculations: extended investigation”, Indo. J. Chem. 2009, 9, 292-296.
Singh, A. K.; Mehrotra, N. K. “NMR spin-lattice relaxation time and activation energy in some molecular systems”, Indian J. Pure Applied Phys. 2007, 45, 168-172.
Allen, J. J.; Schneider, Y.; Kail, B. W.; Luebke, D. R.; Nulwala H. and Damodaran, K. “Nuclear spin relaxation and molecular interactions of a novel triazolium-based ionic liquid”, J. Phys. Chem. B 2013, 117, 3877-3883.
Singh, A. K.; Mehrotra, N. K. “NMR spin-lattice relaxation time and activation energy of some substituted phenols”, India J. Pure Appl. Phys. 2005, 43, 39-43.
Vaish, S. K.; Singh, A.; Singh A. K.; Mehrotra, N. K. “Study of NMR spin lattice relaxation of several aldehydes”, Indian J. Pure Appl. Phys. 2005, 43, 295-300.
Neves, C. M. S. S.; Kurnia, K. A.; Coutinho, J. A. P.; Marrucho, I. M.; Canongia Lopes, J. N.; Freire, M. G.; Rebelo, L. P. N. “Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions”, J. Phys. Chem. B 2013, 117, 10271-10283.
Mutina, A. R.; Hürlimann, M. D. “Effect of oxygen on the NMR relaxation properties of crude oils”, Appl. Mag. Reson. 2005, 29, 503-514.
Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. “Spectrometric Identification of Organic Compounds, 7th ed”. John Wiley & Sons, Inc.: New York, 2005; p33.
Lin, S. T.; Lee, C. C.; Chen, L. C.; Huang, K. F. “Mass spectra of nitro-β,β-dihalostyrenes”, Rapid Commun. Mass Spectrom. 2004, 18, 935-938.
Schwarz, H. Top. Curr. Chem. 1978, 73, 231-263.
Benoit, F.; Holmes, J. L. “Ortho effects–I: Fragmentation mechanisms in some ortho-substituted nitroarenes”, Org. Mass Spectrom. 1970, 3, 993-1007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top