參考文獻
中文部分
1.張雅琪(民88)。隨機利率下外幣選擇權定價理論與模擬。未出版之碩士論文,國立政治大學金融學系研究所,台北市。2.張士琦(民90)。Heath-Jarrow-Morton架構下,四種外國債券選擇權之評價與避險。未出版之碩士論文,世新大學管理學院經濟學系研究所,台北市。3.陳兆維(民91)。利率波動結構對標準與平均利率上限契約評價的影響。未出版之碩士論文,國立台灣大學財務金融學研究所,台北市。英文部分
1.Amin, K.I. and A. Morton. (1994). Implied volatility functions in arbitrage-free term structure models. Journal of Financial Economics. 35, 141-180.
2.Bhanot, K. (1998). Stochastic volatility functions implicit in Eurodollar Futures options. Journal of Futures Markets. 18, 605-627.
3.Blackm, F. and M. Scholes. (1973). The pricing of options and corporate liabilities. Journal of Political Economy. 81, 637-659.
4.Brace, A., D. Gatarek, and M. Musiela. (1997). The market model of interest rate dynamics. Mathematical Finance. 7, 127-155.
5.Brennan, M.J. and E. Schwartz. (1979). A continuous-time approach to the pricing of bonds. Journal of Banking and Finance. 3, 133-155.
6.Chang, C.C. and H.C. Fu. (2001). A binomial option pricing model under stochastic volatility and jump. Canadian Journal of Administrative Sciences.18, 192-203.
7.Cox, J.C., J.E. Ingersoll, Jr., and S.A. Ross. (1985). A theory of the term structure of interest rates. Econometrica. 53, 385-407.
8.Cox, J.C., S.A. Ross and M. Rubinstein. (1979). Option pricing: a simplified approach. Journal of Financial Economics. 7, 229-263.
9.Filipovic, D. (2000). Consistency problems for HJM interest rate models. Unpublished doctoral dissertation. Swiss Federal Institute of Technology.
10.Goldstein, R. (2000). The term structure of interest rates as a random field. Review of Financial Studies.13, 365-384.
11.Heath, D., R. Jarrow, and A. Morton. (1990). Bond pricing and the term structure of interest rates: a discrete time approximation. The Journal of Financial and Quantitative Analysis. 25, 419-440.
12.Heath, D., R. Jarrow, and A. Morton. (1991). Contingent claim valuation with a random evolution of interest rates. Review of Futures Market. 9, 54-76.
13.Heath, D., R. Jarrow, and A. Morton. (1992). Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica. 60, 77-105.
14.Heston, S.I. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies. 6, 327-342.
15.Hilliard, J.E. and A.L. Schwartz. (1996). Binomial option pricing under stochastic volatility and correlated variable. Journal of Derivatives. 22-34.
16.Ho, T.S.Y., and S.B. Lee. (1986). Term structure movements and pricing interest rate contingent claims. Journal of Finance. 41, 1011-1029.
17.Hull, J.C. (2000). Options, Futures, & Other Derivatives. Fourth Edition. Pretice-Hall, Englewood Cliffs, NJ.
18.Hull, J.C. and A. White. (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance. 42, 281-300.
19.Hull, J.C. and A. White. (1990). Pricing interest-rate-derivative securities. Review of Financial Studies. 33, 423-440.
20.Hull, J.C. and A. White. (1993). Bond option pricing based on a model for the evolution of bond prices. Advances in Futures and Options Research. 6, 1-13.
21.Inui, K. and M. Kijima. (1998). A Markovian framework in multi factor Heath-Jarrow-Morton models. Journal of Financial and Quantitative Analysis. 33, 423-440.
22.Jamshidian, F. (1989). An exact bond option pricing formula. Journal of Finance. 44, 205-209.
23.Jamshidian, F. (1997). LIBOR and swap market models and measures. Finance and Stochastics. 1, 293-330.
24.Jarrow, R. and A. Rudd. (1983). Option pricing. Homewood, IL:Irwin.
25.Jong, F.D., J. Driessen, and A. Pelsser. (2000) LIBOR and swap market models for the pricing of interest rate derivatives: an empirical analysis. Discussion Paper 35, Tilburg University, Center for Economic Research.
26.Kennedy, D.P. (1994). The term structure of interest rates as a Gaussian random field. Mathematical Finance. 4, 247-258.
27.Kuo, I.D. (2002). Implied volatility functions for one-and tow-factor Heath, Jarrow, and Morton models. 2002現代財務論壇,台中東海大學。
28.Langetieg, T.C. (1980). A multivariate model of the term structure. Journal of Finance. 35, 71-97.
29.Li, A., P. Ritchken, and L. Sankarasubramanian. (1995). Lattice models for pricing American interest rate claims. Journal of Finance. 50, 719-737.
30.Lim, K.G. and X. Guo. (2000). Pricing American options with stochastic volatility: evidence from S&P 500 futures options. Journal of Futures Markets. 20, 625-659.
31.Litterman, R. and J. Scheinkman. (1991). Common factors affecting bond returns. Journal of Fixed Income. 3, 54-61.
32.Longstaff, F.A. and E. Schwartz. (1992). Interest rate volatility and the term structure: a two-factor general equilibrium model. Journal of Finance. 47, 1259-1282.
33.Miltersen, K., K. Sandmann, and D. Sondermann. (1997). Closed form solutions for term structure derivatives with lognormal interest rates. Journal of Finance. 52, 409-430.
34.Nelson, D.B. and K. Ramaswany. (1990). Binomial processes as diffusion approximations. Review of Financial Studies. 3, 393-431.
35.Park, T.Y. (2001). Efficiency and accuracy of alternative implementations of no-arbitrage term structure models of the Heath-Jarrow-Morton class. Unpublished doctoral dissertation. Faculty of Virginia Polytechnic Institute and State University, Blacksburg, VA.
36.Pedersen, M.B. (1999). Bermudan swaption in the LIBOR market model. SimCorp Financial Research working paper.
37.Ritchken, P. and L. Sankarasubramanian. (1995). Volatility structures of forward rates and the dynamics of the term structure. Mathematical Finance. 5, 55-72.
38.Santa-Clara, P., and D. Sornette. (2001). The dynamics of the forward interest rate curve with stochastic string shocks. Review of Financial Studies. 14, 149-185.
39.Uratani, T. and M. Utsunomiya. (1999). Lattice calculation for forward LIBOR model. Working paper.
40.Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics. 5, 177-188.
41.Yan, H. (2001). Dynamic models of the term structure. Financial Analysts Journal. 60-76.
42.http://www.tmpages.com/tmp55_LIBOR_USD_02.htm