跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方姿云
研究生(外文):Tzu-Yun Fang
論文名稱:市場模型於歐洲美元期貨選擇權之評價
論文名稱(外文):The Pricing of Eurodollar Futures Options Under the Market Model.
指導教授:林月能林月能引用關係
指導教授(外文):Yueh-Neng Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:企業管理學系
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:59
中文關鍵詞:市場模型歐洲美元期貨選擇權二元樹狀圖
外文關鍵詞:Market ModelEurodollar Futures OptionBinomail Tree
相關次數:
  • 被引用被引用:2
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:3
衍生性金融商品的蓬勃發展促進利率模型推陳出新。繼HJM(1992)模型,打破傳統以即期利率作為出發點的型態,然而HJM模型的瞬間遠期利率不存在於市場,且瞬間遠期利率為常態分配的假設也不合常理,遂有市場模型應運而生。
本文使用市場模型評價歐洲美元期貨選擇權。修正Uratani 和Utsunomiya(1999),並應用Park(2001)於HJM模型下評價歐洲美元期貨選擇權的二元樹狀圖法,了解市場模型二元樹狀圖之構建,評價歐洲美元期貨選擇權。
實證結果發現,雖然兩個參數的指數波動度比一個參數的常數波動度配適績效差,產生的平均價格誤差較高,與其他實證文獻不符,但可確定的是相較於常數波動度,指數波動度的隱含波動度參數估計值穩定性較低。此外,深度價內選擇權的偏誤現象較其他價位的選擇權大,深度價外則不明顯。
造成實證結果與其他實證結果相異的原因之一為,採集樣本時未刪除嚴重深度價內及嚴重深度價外的選擇權,該類選擇權因流動性低、交易量小,若一併納入樣本中可能會發生評價誤差。本研究的樣本高達80.5274%為深度價內或深度價外選擇權,樣本分佈極不平均。此外,指數波動度函數之參數值可能僅是局部解,而非全域解。
Abstract
The popularity of the interest rate derivatives promotes the interest rate model. Although HJM(1992) came up with the new methodology, the instantaneously forward rates of the Normal distribution seemed abnormal and didn’t exist in the real market. The Market model tackled the problem. In contrast to HJM model, the Market model has two appealing features as follows: (1) the forward rates can be observed directly. (2) The forward rates follow the Lognormal distribution.
Based on some adjustment of Uratani and Utsunomiya(1999) and Park(2002), this research used the Binomial tree of the Market model to price Eurodollar futures option. The empirical results found the exponential volatility function has larger fitting errors than the constant volatility function. This didn’t match with other empirical results. However, we can make sure that the parameters of the exponential volatility function are more unstable than those of the constant volatility function. In addition, the pricing errors of the deep-in-the-money option are the most severe.
One of reasons resulted in discordances with other empirical results is this research didn’t get rid of deep-in-the-money and deep-out-of-the-money options. The trading activities of these options are very inactive. Besides, the parameter values of the exponential volatility function may be possible local solutions, not global solutions.
目 錄
第一章 緒論----------------------------------------------1
1.1研究動機-----------------------------------------1
1.2研究目的-----------------------------------------1
1.3研究架構-----------------------------------------2
第二章 文獻回顧------------------------------------------3
2.1利率期間結構-------------------------------------3
2.2利率模型-----------------------------------------4
2.2.1均衡模型-----------------------------------------4
2.2.2無套利模型---------------------------------------6
2.3數值解之樹狀法評價------------------------------13
2.3.1定態波動度之HJM、市場模型-----------------------13
第三章 研究方法-----------------------------------------16
3.1契約介紹----------------------------------------16
3.1.1歐洲美元期貨------------------------------------16
3.1.2歐洲美元期貨選擇權------------------------------17
3.2樹狀法於市場模型歐洲美元期貨選擇權之運用--------18
3.2.1波動度函數的設定--------------------------------20
3.2.2遠期LIBOR利率樹---------------------------------21
3.2.3歐洲美元期貨價格樹------------------------------26
3.2.4歐洲美元期貨選擇權價格樹------------------------27
第四章 實證結果與分析-----------------------------------31
4.1資料說明及處理----------------------------------31
4.2參數估計結果------------------------------------35
4.3樣本內價格誤差結果------------------------------37
第五章 結論與建議---------------------------------------46
5.1 結論-------------------------------------------46
5.2 後續研究建議-----------------------------------46
附錄-----------------------------------------------------48
參考文獻-------------------------------------------------56
圖 目 錄
圖3-1 樹狀圖於市場模型之實證流程圖----------------------19
圖3-2 常數波動度的遠期LIBOR利率重合二項樹---------------22
圖3-3 指數波動度的遠期LIBOR利率非重合二項樹-------------23
圖3-4 市場模型之遠期LIBOR利率樹-------------------------26
圖3-5 三月到期的歐洲美元期貨選擇權價格樹----------------27
圖3-6 計算三月到期的歐洲美元期貨選擇權價格時,所需使用的六月到期歐洲美元債券價格-----------------------------------29
圖4-1 2002年1月1日至1月31日止的倫敦銀行拆款利率---------33
圖4-2 不同交易日下波動度函數參數估計值------------------36
圖4-3 不同交易日的波動度函數值--------------------------37
圖4-4 不同交易日下最適期初遠期利率曲線------------------37
圖4-5 不同交易日之平均價格誤差(買權)------------------40
圖4-6 不同交易日之平均價格誤差(賣權)------------------42
表 目 錄
表3-1 本研究市場模型搭配波動度之歸納表-------------------23
表4-1 歐洲美元期貨與歐洲美元期貨選擇權樣本摘要-----------34
表4-2 樣本期間內之最適波動度參數估計值-------------------36
表4-3 不同波動度函數下價位與平均價格誤差的關係-----------39
表4-4 不同波動度函數於樣本期間內的價格預測誤差-----------45
參考文獻
中文部分
1.張雅琪(民88)。隨機利率下外幣選擇權定價理論與模擬。未出版之碩士論文,國立政治大學金融學系研究所,台北市。
2.張士琦(民90)。Heath-Jarrow-Morton架構下,四種外國債券選擇權之評價與避險。未出版之碩士論文,世新大學管理學院經濟學系研究所,台北市。
3.陳兆維(民91)。利率波動結構對標準與平均利率上限契約評價的影響。未出版之碩士論文,國立台灣大學財務金融學研究所,台北市。
英文部分
1.Amin, K.I. and A. Morton. (1994). Implied volatility functions in arbitrage-free term structure models. Journal of Financial Economics. 35, 141-180.
2.Bhanot, K. (1998). Stochastic volatility functions implicit in Eurodollar Futures options. Journal of Futures Markets. 18, 605-627.
3.Blackm, F. and M. Scholes. (1973). The pricing of options and corporate liabilities. Journal of Political Economy. 81, 637-659.
4.Brace, A., D. Gatarek, and M. Musiela. (1997). The market model of interest rate dynamics. Mathematical Finance. 7, 127-155.
5.Brennan, M.J. and E. Schwartz. (1979). A continuous-time approach to the pricing of bonds. Journal of Banking and Finance. 3, 133-155.
6.Chang, C.C. and H.C. Fu. (2001). A binomial option pricing model under stochastic volatility and jump. Canadian Journal of Administrative Sciences.18, 192-203.
7.Cox, J.C., J.E. Ingersoll, Jr., and S.A. Ross. (1985). A theory of the term structure of interest rates. Econometrica. 53, 385-407.
8.Cox, J.C., S.A. Ross and M. Rubinstein. (1979). Option pricing: a simplified approach. Journal of Financial Economics. 7, 229-263.
9.Filipovic, D. (2000). Consistency problems for HJM interest rate models. Unpublished doctoral dissertation. Swiss Federal Institute of Technology.
10.Goldstein, R. (2000). The term structure of interest rates as a random field. Review of Financial Studies.13, 365-384.
11.Heath, D., R. Jarrow, and A. Morton. (1990). Bond pricing and the term structure of interest rates: a discrete time approximation. The Journal of Financial and Quantitative Analysis. 25, 419-440.
12.Heath, D., R. Jarrow, and A. Morton. (1991). Contingent claim valuation with a random evolution of interest rates. Review of Futures Market. 9, 54-76.
13.Heath, D., R. Jarrow, and A. Morton. (1992). Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica. 60, 77-105.
14.Heston, S.I. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies. 6, 327-342.
15.Hilliard, J.E. and A.L. Schwartz. (1996). Binomial option pricing under stochastic volatility and correlated variable. Journal of Derivatives. 22-34.
16.Ho, T.S.Y., and S.B. Lee. (1986). Term structure movements and pricing interest rate contingent claims. Journal of Finance. 41, 1011-1029.
17.Hull, J.C. (2000). Options, Futures, & Other Derivatives. Fourth Edition. Pretice-Hall, Englewood Cliffs, NJ.
18.Hull, J.C. and A. White. (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance. 42, 281-300.
19.Hull, J.C. and A. White. (1990). Pricing interest-rate-derivative securities. Review of Financial Studies. 33, 423-440.
20.Hull, J.C. and A. White. (1993). Bond option pricing based on a model for the evolution of bond prices. Advances in Futures and Options Research. 6, 1-13.
21.Inui, K. and M. Kijima. (1998). A Markovian framework in multi factor Heath-Jarrow-Morton models. Journal of Financial and Quantitative Analysis. 33, 423-440.
22.Jamshidian, F. (1989). An exact bond option pricing formula. Journal of Finance. 44, 205-209.
23.Jamshidian, F. (1997). LIBOR and swap market models and measures. Finance and Stochastics. 1, 293-330.
24.Jarrow, R. and A. Rudd. (1983). Option pricing. Homewood, IL:Irwin.
25.Jong, F.D., J. Driessen, and A. Pelsser. (2000) LIBOR and swap market models for the pricing of interest rate derivatives: an empirical analysis. Discussion Paper 35, Tilburg University, Center for Economic Research.
26.Kennedy, D.P. (1994). The term structure of interest rates as a Gaussian random field. Mathematical Finance. 4, 247-258.
27.Kuo, I.D. (2002). Implied volatility functions for one-and tow-factor Heath, Jarrow, and Morton models. 2002現代財務論壇,台中東海大學。
28.Langetieg, T.C. (1980). A multivariate model of the term structure. Journal of Finance. 35, 71-97.
29.Li, A., P. Ritchken, and L. Sankarasubramanian. (1995). Lattice models for pricing American interest rate claims. Journal of Finance. 50, 719-737.
30.Lim, K.G. and X. Guo. (2000). Pricing American options with stochastic volatility: evidence from S&P 500 futures options. Journal of Futures Markets. 20, 625-659.
31.Litterman, R. and J. Scheinkman. (1991). Common factors affecting bond returns. Journal of Fixed Income. 3, 54-61.
32.Longstaff, F.A. and E. Schwartz. (1992). Interest rate volatility and the term structure: a two-factor general equilibrium model. Journal of Finance. 47, 1259-1282.
33.Miltersen, K., K. Sandmann, and D. Sondermann. (1997). Closed form solutions for term structure derivatives with lognormal interest rates. Journal of Finance. 52, 409-430.
34.Nelson, D.B. and K. Ramaswany. (1990). Binomial processes as diffusion approximations. Review of Financial Studies. 3, 393-431.
35.Park, T.Y. (2001). Efficiency and accuracy of alternative implementations of no-arbitrage term structure models of the Heath-Jarrow-Morton class. Unpublished doctoral dissertation. Faculty of Virginia Polytechnic Institute and State University, Blacksburg, VA.
36.Pedersen, M.B. (1999). Bermudan swaption in the LIBOR market model. SimCorp Financial Research working paper.
37.Ritchken, P. and L. Sankarasubramanian. (1995). Volatility structures of forward rates and the dynamics of the term structure. Mathematical Finance. 5, 55-72.
38.Santa-Clara, P., and D. Sornette. (2001). The dynamics of the forward interest rate curve with stochastic string shocks. Review of Financial Studies. 14, 149-185.
39.Uratani, T. and M. Utsunomiya. (1999). Lattice calculation for forward LIBOR model. Working paper.
40.Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics. 5, 177-188.
41.Yan, H. (2001). Dynamic models of the term structure. Financial Analysts Journal. 60-76.
42.http://www.tmpages.com/tmp55_LIBOR_USD_02.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top