跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/02 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃盼盼
研究生(外文):Huang, Pan-Pan
論文名稱:光偶極陷阱所捕獲之原子團特性及其與探測光交互作用之研究
論文名稱(外文):Characterization of cold atoms captured in an optical dipole trap and study of their interaction with a probe laser
指導教授:賴暎杰余怡德
指導教授(外文):Lai, YinchiehYu, Ite A.
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:127
中文關鍵詞:光偶極陷阱
外文關鍵詞:optical dipole trap
相關次數:
  • 被引用被引用:1
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
為了提高銣-87原子在光偶極陷阱(optical dipole trap,簡稱ODT)中的光學密度(optical density,簡稱OD)以進而在其中進行單光子實驗,本論文研究如何能有效地將原子分別從TOP(time-averaged orbiting potential,簡稱TOP)和黑暗壓縮型磁光陷阱(dark compressed magnetic-optical trap,簡稱dark-CMOT)以及黑暗型磁光陷阱(dark magnetic-optical trap,簡稱dark MOT)來載入ODT中。在TOP中的原子溫度和密度分別是57.5μK和1.2×1012 cm-3﹐dark MOT 和dark-CMOT後的原子溫度則為300μK,密度為3.8×1010 cm-3。我們使用的ODT其光源為波長1064nm的光纖雷射,最大輸出功率為10W,其聚焦後的光腰約為54 μm(e-2直徑),ODT的陷阱深度為850μK。
我們研究了原子在ODT中的溫度、原子數以及生存時間,光學密度(OD)的測量則是藉由分析一道頻率為├ |5S_(1/2),F=2⟩到├ |5P_(3/2),F'=2⟩之左旋探測雷射光對ODT中原子長軸的穿透率來達成。此探測光和ODT中原子的重合度對於測量OD有極大的影響,我們可藉由分析原子團影像被強度遠大於一個飽和吸收光強,頻率為├ |5S_(1/2),F=2⟩到├ |5P_(3/2),F'=3⟩的探測光作用掉的區域來分析ODT中原子團與探測光的重合度。
從TOP 3A(TOP線圈上的電流值)將原子載入ODT中,ODT中的原子數為1.6×106,溫度約為61μK,由原子數和雪茄形原子團的尺寸82×82×3000μm3(e-2直徑),可推算沿著原子團長軸的光學密度為170。實驗上用一道光腰為45μm(e-2直徑),的探測光對原子中心長軸的穿透率量測值只有20%,由此穿透率、探測光光強以及原子密度在空間上的分布所推算出的原子的長軸中心OD則只有11。
從dark -CMOT將原子載入ODT中,ODT中的原子數為2.7×106,溫度為350μK,當原子在基態F=2上時,原子在功率為10.7W的ODT內的生存時間約為0.43s,由原子數和雪茄形原子團的尺寸160×160×2800 μm3(e-2直徑),可推算沿著原子團長軸的光學密度為72。
從dark MOT將原子載入功率為1.7W的ODT中,ODT的原子數為4.4×106,溫度約為350μK,由原子數和雪茄形原子團的尺寸170×170×2500 μm3(e-2直徑),可推算沿著原子團長軸的光學密度為120。當原子在基態F=1上,其在功率為10.7W和1.6W的ODT內的生存時間分別為0.84s和11s。
之後我們的目標是降低從dark MOT載入ODT中的原子的溫度,使此種載入方式優於將原子從TOP載入ODT中的方法。

To maximize the optical density (OD) of cold 87Rb atoms in an optical dipole trap (ODT) for future single-photon experiments, we investigated the methods of loading the atoms into the ODT from a time-averaged orbiting potential (TOP) and from a dark magnetic-optical trap with and without the magnetic compression (abbreviated as dark-CMOT and dark-MOT, respectively). The atomic temperature and density in the TOP 3A (the current through the TOP coils) were 57.5 K and 1.2×1012 cm-3; those in the dark-CMOT or dark-MOT were 300 K and 3.8×1010 cm-3. The ODT was realized by a 1064 nm fiber laser with a maximum power of 10 W. The e-2 full width of the focused laser beam was approximately 54 μm, giving the ODT trap depth of about 850 K.
We studied the temperature, number, and life time of the atoms captured in the ODT. ODs of the atoms were measured by the absorption of a weak probe laser beam tuned to the D2 transition of 87Rb and propagating along the major axis of the ODT. The alignment of the probe beam is critical to the absorption measurement and was studied by imaging the atom cloud under the radiation pressure from the high-intensity probe field driving the cycling transition from |F=2 to |F’=3 resonantly.
With the loading from the TOP 3A, there were about 1.6×106 atoms with a temperature of 61 μK in the ODT with a power of 10.7 W. The OD along the central axis estimated by the atom number and the dimension of the cigar-shaped cloud of 82×82×3000 μm3 (e-2 full widths) is 170. However, the transmission of the probe field with the e-2 full width of 45 μm driving the non-cycling transition from |F=2 to |F’=2 resonantly and propagating through the major axis of the atom cloud is about 20%, showing that the OD along the central axis of the cloud is only 11.
With the loading from the dark-CMOT, there were about 2.7×106 atoms with a temperature of 350 μK and a life time of 0.43 s in the ODT with a power of 10.7 W. The life time was measured under the captured atoms being placed in the |F=2 ground state. The OD along the central axis estimated by the atom number and the dimension of the cigar-shaped cloud of 160×160×2800 μm3 (e-2 full widths) is 72.
With the loading from the dark-MOT, there were about 4.4×106 atoms with a temperature of 350 μK in the ODT with a power of 10.7 W. The OD along the central axis estimated by the atom number and the dimension of the cigar-shaped cloud of 170×170×2500 μm3 (e-2 full widths) is 120. When the captured atoms were placed in the |F=1 ground state, their lifetime of 0.84 and 11 s were observed in the 10.7-W and 1.6-W ODT, respectively. We will further cool down the atoms to make the simpler dark-MOT loading method outperform the more complicate TOP loading method.

中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… iii
誌謝 ………………………………………………………………… v
目錄 ………………………………………………………………… vi
圖目錄 ………………………………………………………………… viii
表格目錄 …………………………………………………………………… xv
縮寫說明 ………………………………………………………………… xvi
第一章 引論 …………………………………………………………1
第二章 理論介紹………………………………………………………3
2-1 原子冷卻過程介紹……………………………………………3
2-1-1 都卜勒冷卻與磁光陷阱…………………………………………3
2-1-2 黑暗型壓縮磁光陷阱……………………………………………5
2-1-3 偏極梯度冷卻……………………………………………………6
2-1-4 TOP與蒸發式冷卻………………………………………………8
2-2 光偶極陷阱(ODT)的介紹……………………………………8
2-2-1 光偶極陷阱(ODT)的歷史發展………………………………8
2-2-2 光偶極陷阱(ODT)的古典模型………………………………9
2-2-3 光偶極陷阱(ODT)的半古典理論……………………………11
2-2-4 在高斯光偶極陷阱中的鹼金族原子……………………14
第三章 實驗系統介紹…………………………………………………17
3-1 雷射系統……………………………………………………………17
3-2 真空腔及磁場線圈……………………………………………18
3-3 量測方法的介紹及系統架設…………………………………19
3-3-1 螢光法……………………………………………………19
3-3-2 吸收影像法………………………………………………19
3-3-3 吸收影像-Image beam與光偶極陷阱(ODT)中原子長軸 夾角為〖45〗^°時的原子團參數計算方式……………………………24
3-3-4 光偶極陷阱(ODT)之光路架設…………………………26
3-3-5 光抽運法……………………………………………28
3-3-6 探測雷射光路架設………………………………………30
第四章 從TOP載入ODT之實驗數據及分析……………………………33
4-1 測量TOP原子參數………………………………………………33 4-2 從TOP載入ODT………………………………………………34
4-3 ODT中原子特性之量測及探測雷射穿透率分析…………………35
第五章 從dark-CMOT載入ODT之實驗數據及分析……………………39
5-1 dark-CMOT的最佳化………………………………………………39
5-2 dark-CMOT 後的偏極梯度冷卻時序最佳化……………………51
5-3 從dark-CMOT載入ODT的時序最佳化……………………………61
5-4 ODT中原子特性之量測……………………………………………63
5-4-1 原子在ODT中的Zeeman state的一致性對生存時間的影響…………………………………………………………………………66
5-4-2 影響ODT內原子溫度的實驗參數之研究………………………68
第六章 從dark-MOT載入ODT之實驗數據及分析……………………74
6-1 dark-MOT的最佳化…………………………………………74
6-2 dark MOT 後的偏極梯度冷卻……………………………101
6-3 影響ODT內原子溫度的實驗參數之研究…………………106
6-4 有無dark MOT對ODT內原子數的影響……………………113
6-5 陷阱深度對ODT內的原子數、溫度以及生存時間之影響119
第七章 結論…………………………………………………………123
參考資料………………………………………………………………125


[1]T.W. Hänsch, A.L. Schawlow , “Cooling of Gases by Laser Radiation”, Optics Commutations, 13, pp. 68-69, 1975.
[2]S. Chu, et al. “Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure”, Phys. Rev. Lett. 55, pp.48-51, 1985.
[3]E. L. Raab, et al. “Trapping of Neutral Sodium Atoms with Radiation Pressure”, Phys. Rev. Lett. 59, pp.2631-2634, 1987.
[4]W. Ketterle, et al. “High Densities of Cold Atoms in a Dark Spontaneous-Force Optical Trap”, Phys. Rev. Lett. 70, pp.2253-2256, 1993.
[5]W. Petrich, et al. “Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms”, Phys. Rev. Lett. 74, pp.3352-3355, 1995.
[6]A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure”, Phys. Rev. Lett. 24, pp.156-159, 1970.
[7]J. E. Bjorkholm, et al. “Observation of Focusing of Neutral Atoms by the Dipole Forces of Resonance-Radiation Pressure”, Phys. Rev. Lett. 41, pp.1361-1364, 1978.
[8]S. Chu, et al. “Experimental Observation of Optically Trapped Atoms”, Phys. Rev. Lett. 57, pp.314-317, 1986.
[9]J. D. Miller, R. A. Cline, D. J. Heinzen, “Far-off-resonance optical trapping of atoms”, Phys. Rev. A, 47, R4567, 1993.
[10] R. Grimm, M. Weidemüller, “Optical Dipole Traps for Neutral Atoms”, Advances In Atomic, Molecular, and Optical Physics, 42. pp.95-170, 2000.
[11]P. F. Griffin, “Laser Cooling and Loading of Rb into A Large Period,
Quasi–Electrostatic, Optical Lattice”, The University of Durham, PhD thesis, 2005
[12]M. Schulz, “Tightly confined atoms in optical dipole traps”, The University of Innsbruck, PhD thesis, 2002
[13]蕭豪毅,「利用光偶極捕捉冷原子」,國立清華大學,碩士論文,民國101年。
[14]陳易馨,「銣87原子玻色-愛因斯坦凝結之實現」,碩士論文,民國95年。
[15]M. T. DePue, et al. “Transient compression of a MOT and high intensity fluorescent imaging of optically thick clouds of atoms”, Optics Commutations, 180, pp. 73-79, 2000.
[16]Y.-J. Lin, et al. “Rapid production of Rb87 Bose-Einstein condensates in a combined magnetic and optical potential”, Phys. Rev. A, 79, 063631, 2009.
[17]A. Couvert, et al. “A quasi-monomode guided atom laser from an all-optical Bose-Einstein condensate”, Europhys. Lett. 83, 50001, 2008.
[18]L.-M. Duan, “Long-distance quantum communication with atomic ensembles and linear optics”, Nature, 414, pp. 413-418, 2001.
[19]D. Felinto, et al. “Control of decoherence in the generation of photon pairs from atomic ensembles”, Phys. Rev. A, 72, 053809, 2005.
[20]Yu-Ao Chen, et al. “Memory-built-in quantum teleportation
with photonic and atomic qubits”, Nature Physics, 4, pp. 103-107, 2008.
[21] C.-S. Chuu, et al. “Quantum Memory with Optically Trapped Atoms”, Phys. Rev. Lett. 101, 120501, 2008.
[22]S. Friebel, et al. “CO2 -laser optical lattice with cold rubidium atoms”, Phys. Rev. A, 57, R20, 1998.
[23] M. D. Barrett, J. A. Sauer, M. S. Chapman. “All-Optical Formation of an Atomic Bose-Einstein Condensate”, Phys. Rev. Lett. 87, 010404, 2001.
[24]G. Cennini, et al. “All-Optical Realization of an Atom Laser”, Phys. Rev. Lett. 91, 240408, 2003.
[25] T. Peyronel, et al. “Quantum nonlinear optics with single photons
enabled by strongly interacting atoms”, Nature, 488, pp. 57-60,2012.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top