跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕均
研究生(外文):Chen, Yi-Chun
論文名稱:利用物件導向切割的二維至三維影像轉換
論文名稱(外文):An Efficient 2D to 3D Image Conversion with Object-based Segmentation
指導教授:張添烜
指導教授(外文):Chang, Tian-Sheuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:67
中文關鍵詞:二維轉三維物件導向切割
外文關鍵詞:2D to 3DObject-based segmentation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今的視覺處理相關領域中,三維影像處理已成為一個重要趨勢。許多自動將二維影像轉換為三維的演算法已被提出,用以解決三維影像內容缺乏的問題。然而現在仍沒有一個快速演算法,可以僅利用單張影像中的資訊,將影像做有效的立體化。
本篇研究提出了一個快速轉換演算法,其中包含影像切割、影像分類、物件邊緣追蹤以及三維影像計算等演算法。我們採用了分水嶺影像切割法(watershed segmentation),使得深度資訊可以做有效的統整;而透過影像分類演算法,回復影像中場景的幾何關係;另外,我們提出物件邊緣追蹤法,有效率的利用取得的深度及幾何相關資訊偵測影像中不同物件的相關位置以及類別。最後我們用偵測物件結果,產生深度圖以及紅藍立體影像。
在評量二維至三維轉換演算法的結果方面,我們與其他演算法做比較。實驗結果顯示,我們提出的二維至三維轉換演算法,在僅有單張影像資訊的情況下,所估測出的深度準確度及演算法運算速度的總合評估上,表現比其他相關演算法優異。

Nowadays, the 3D image processing has become a trend in the related visual processing field. Many automatic 2D to 3D conversion algorithms have been proposed to solve the lack of 3D content. But there is still no fast algorithm that converts single monocular images well.
In this thesis, we propose a fast conversion algorithm that includes the image segmentation, image classification, object boundary tracing method, and 3D image generation. The image segmentation adopts the watershed method to easily collect the information of depth cue. Then, the image classification recovers the geometry of scene in the image. With the depth cue and geometry information, the object boundary tracing method is proposed to detect objects in image efficiently. Finally, the object result is used to generate depth map and 3D anaglyph image.
To evaluate the results, we compare the stereo images with other 2D to 3D conversion systems. Experiment result shows that the proposed 2D to 3D conversion algorithm could perform better than the associated ones in the depth accuracy and processing speed for converting monocular images.

Chapter 1. Introduction 1
1.1. Background 1
1.2. Motivation and Contribution 2
1.3. Thesis Organization 3
Chapter 2. Previous Work 4
2.1. Various Depth Cues 4
2.1.1. Depth from Camera Motion 5
2.1.2. Individual Moving Object 6
2.1.3. Defocus 6
2.1.4. Linear Perspective 7
2.1.5. Texture 8
2.1.6. Relative height 8
2.1.7. Statistical Pattern 8
2.2. Depth Cues Fusion-based Method 9
2.2.1. SANYO 2D to 3D Conversion Adaptive Algorithm 9
2.2.2. The Hybrid Depth Cueing System 10
2.3. Pattern Recognition-based Method 12
2.3.1. Depth-Map Generation by Image Classification 12
2.3.2. Recovering Major Occlusion Boundaries 14
Chapter 3. 3D Image Construction from 2D Image 17
3.1. Algorithm Overview 17
3.2. Object-based Segmentation 18
3.2.1. Initail Segmentation 18
3.2.1.1. Noise Reduction and Gradint Computation 19
3.2.1.2. Watershed Segmentation 20
3.2.2. Fast Neighbor merge 22
3.2.2.1. Cues Computation 23
3.2.2.2. Neighbor Merge 25
3.2.3. Surface Layout 26
3.2.3.1. Superpixels 28
3.2.3.2. Cues Computation 28
3.2.3.3. Same-Label Likelihoods 29
3.2.3.4. Multiple Segmentations 30
3.2.3.5. Label Likelihood Computation 31
3.2.3.6. Homogeneity Likelihood Computation 31
3.2.3.7. Label Confidences Computation 31
3.2.4. Object Boundary Tracing Method 32
3.2.4.1. Initial Boundary Selection 33
3.2.4.2. Object Boundary Tracer 34
3.2.5. Constraint Segmentation 36
3.3. Depth Assignment 37
3.4. 3D Image Construction for Binocular Vision 41
Chapter 4. Experimental Results and Analysis 44
4.1. Introduction 44
4.2. 3D Results 44
4.2.1. Our 3D Results 44
4.2.2. 3D Result Comparison between Different Algorithm 51
4.3. Execution Time 55
Chapter 5. Conclusion and Future Works 56
5.1. Conclusion 56
5.2. Future work 57
Reference 58
Appendix 63
[1] T. Iinuma, H. Murata, S. Yamashita, and K. Oyamada, “Natural Stereo Depth Creation Methodology for a Real-time 2D-to-3D Image Conversion,” SID Symposium Digest of Technical Papers, pp. 1212-1215, 2000.
[2] C. C. Cheng, T. L. Chung, Y. M. Ysai, and L. G. Chen, “Hybrid Depth Cueing for 2D-To-3D Conversion System,” in Proc. of Stereoscopic Displays and Application XX, 2009
[3] S. Battiato, A. Capra, S. Curti, and M. L. Cascia, "3D Stereoscopic Image Pairs by Depth-Map Generation," in Proc. of International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), pp. 124-131, 2004.
[4] D. Hoiem, A. Stein, A. A. Efros, and M. Hebert, “Recovering occlusion boundaries from a single image,” in Proc. of IEEE International Conference on Computer Vision (ICCV), 2007.
[5] R. I. Hartley, and A. Zisserman, “Multiple Views Geometry in Computer Vision,” Cambridge University Press: Cambridge, UK, 2000.
[6] M. Pollefeys, L. V. Gool, and M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch, “Visual modeling with a hand-held camera,” International Journal of Computer Vision , vol. 59, no.3, pp. 207-232, 2004.
[7] C. Tomasi and T. Kanade, “Detection and tracking of point features,” Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-91-132, Apr. 1991.
[8] T. Jebara, A. Azarbayejani, A. Pentland, 3D structure from 2D motion, IEEE Signal Process. Mag. 16 (3) (1999) 66–84.
[9] M.Z. Brown, D. Burschka, and G. Hager, “Advances in Computational Stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no.8, pp. 993-1008,2003.
[10] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms," International Journal of Computer Vision (IJCV), vol. 47, pp. 7-42, 2002.
[11] S. Knorr, T. Sikora, “An image-based rendering (IBR) approach for realistic stereo view synthesis of TV broadcast based on structure from motion,” in Proc. of IEEE International Conference on Image Processing (ICIP), San Antonio, USA, 2007.
[12] L.MacMillan, “An Image based approach to three-dimensional computer graphics,” Ph.D. Dissertation, 1997, University of North Carolina.
[13] I. Ideses, L. P. Yaroslavsky, and B. Fishbain, “Real-time 2D to 3D video conversion,” Journal of Real-Time Image Processing, vol.2, no. 1, pp. 3–9, 2007.
[14] M. Kunter, S. Knoor, A. Krutz, T. SiKora, “Unsupervised object segmentation for 2D to 3D conversion,” in Proc. of SPIE, vol. 7237, 2009
[15] A. Krutz, M. Kunter, M. Mandal, M. Frater, and T. Sikora, “Motion-based Object Segmentation using Sprites and Anisotropic Diffusion”, 8th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), 2007.
[16] S. A. Valencia, R. M. Rodríguez-Dagnino, “Synthesizing Stereo 3D Views from Focus Cues in Monoscopic 2D images,” in Proc. SPIE, vol. 5006, pp. 377-388, 2003.
[17] J.M. Geusebroek and A.W.M. Smeulders, “A six-stimulus theory for stochastic texture,” International Journal of Computer Vision (IJCV), vol. 62, pp. 7–16, 2005.
[18] V. Nedovic, A. W. M. Smeulders, A. Redert, J. M. Geusebroek, “Depth estimation via stage classification,” in Proc. of 3DTV conference, pp 77-80, 2008
[19] D. A. Forsyth, D.A. “Shape from texture and integrability,” in Proc. of International Conference on Computer Vision (ICCV), vol. 2, pp. 447-452, 2001,
[20] A. M. Loh, R. Hartley “Shape from Non-Homogeneous, Non-Stationary, Anisotropic, Perspective texture”, in Proc. of the British Machine Vision Conference, 2005
[21] Y. J. Jung, A. Baik, J. Kim, and D. Park, “A novel 2D-to-3D conversion technique based on relative height depth cue,” in Proc. of SPIE, vol. 7237, 2009
[22] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single monocular images,” In NIPS, vol. 18, 2005
[23] A. Saxena, S. H. Chung, and A. Y. Ng, “3-D depth reconstruction from a single still image,” in Proc. of International Journal of Computer Vision (IJCV), vol.76 no. 1, 2007
[24] T. Okino, H. Murata, K. Taima, T. Iinuma, and K. Oketani, "New television with 2D to 3D image conversion technologies," in Proc. of SPIE , Stereoscopic Displays and Virtual Reality Systems III, Vol. 2653, pp. 96-103, 1996.
[25] H. Murata, Y. Mori, S. Yamashita, A. Maenaka, S. Okada, K. Pyamada, and S. Kishimoto, "A real- Time Image Conversion Technique Using Computed Image Depth," SID Symposium Digest of Technical Papers, vol. 29, pp. 919-922, 1998
[26] Martin, C. Fowlkes and J. Malik, “Learning to detect natural image boundaries using local brightness, color and texture cues,” IEEE Transactions on Pattern Analysis and Machine Intelligence,” vol. 26, no. 5, pp. 530–549, 2004
[27] D. Hoiem, A. Efros, and M. Hebert, “Recovering surface layout from an image,” International Journal of Computer Vision (IJCV), vol. 75, no. 1, pp. 151–172, 2007.
[28] Y. R. Horng, Y. C. Tseng, T. S. Chang, “Stereoscopic Images Generation with Directional Gaussian Filter,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2650-2653, 2010.
[29] A. Ko ̈rbes, R. Lotufo, G. B. Vitor, and J. V. Ferreira, “A proposal for a parallel watershed transform algorithm for real-time segmentation,” in proc. of Workshop de Visa ̃o Computacional WVC’, 2009.
[30] A. R. Smith, “Color gamut transform pairs,” Computer Graphics, Vol. 12, pp. 12-19, 1978.
[31] J. R. Smith and S. F. Chang, "VisualSEEk: A fully automated content-based image query system", in proc. of ACM Multimedia Conference, pp. 87 - 98, 1996.
[32] T. Leung and J. Malik, “Representing and recognizing the visual appearance of materials using threedimensional textons,” International Journal of Computer Vision (IJCV), vol. 43, no. 1, pp. 29–44, 2001.
[33] D.H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary Shapes", Pattern Recognition, vol.13, no.2, pp.111-122, 1981
[34] P. Felzenszwalb and D. Huttenlocher. “Efficient graph-based image segmentation, “International Journal of Computer Vision (IJCV), vol.59, no.2, 2004.
[35] J. L. Schneiter, N. R. Corby , US Patent No. 4,963,017 , “Variable depth range camera”, General Electric Company, schenectedy, N.Y, 1990
[36] Y. Su, M. T. Sun, and V. Hsu, “Global motion estimation from coarsely sampled motion vector field and the applications,” in Proc. International Symposium on Circuits and System (ISCAS),, vol. 2, pp. 628–631, 2003
[37] S. Makrogiannis, G. Economou, and S. Fotopoulos, “A region dissimilarity relation that combines feature-space and spatial information for color image segmentation,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 1, pp. 44–53, 2005.
[38] D. B. K. Trieu, and T. Maruyama, T, “Real-time image segmentation based on a parallel and pipelined watershed algorithm.,“ Journal of Real-Time Image Processing, vol. 2, no. 4, pp. 319–329, 2007

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top