跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃德宜
研究生(外文):Te-Yi Huang
論文名稱:利用高速火焰熔射技術製作鎳基自熔合金耐磨耗塗層之研究
論文名稱(外文):Study on Wear Resistance of Ni-based Self-Fluxing Alloy Sprayed by HVOF
指導教授:蘇程裕蘇程裕引用關係
口試委員:許正勳林中魁
口試日期:2008-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:熔射HVOF自熔合金磨耗
外文關鍵詞:Thermal SprayHVOFSelf-Fluxing AlloyWear
相關次數:
  • 被引用被引用:1
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以四種顆粒大小與WC添加多寡的商業用鎳基自熔合金粉末為基礎,經熔射後,以一大氣壓氮氣保護的條件對各塗層進行重熔處理,重熔溫度分別為950°C、1000°C與1050°C。為探討塗層經重熔後,晶粒組織與相態變化,並且找出塗層磨耗機制,從而找出最適合用在磨耗上的塗層,對各塗層進行各種物性分析、微硬度分析與磨耗試驗。
試驗結果顯示,經950°C重熔後,各塗層會趨向緻密,此時塗層的硬度與磨耗性質為相對最佳;相態變化方面,塗層在950°C時,Cr會析出,與C、B形成硬化相,Ni也與B形成硬化相,同時未熔融的Ni形成固溶體,隨著重熔溫度提高,晶粒會出現粗大化現象,造成孔洞增加,硬度下降;磨耗方面,各塗層經950°C重熔後,皆較未重熔時硬度下降,但抗磨耗性質卻較佳,添加WC的塗層其磨耗性會較佳,磨耗機制則以磨損、黏著與表面疲勞為主。
四種塗層中以TSM2002塗層經950°C重熔後為最佳,能得到一硬度超過700Hv、孔隙率低於1%,抗磨耗性佳的塗層。
This study focuses on the effects of the reflowing process on the physical properties、hardness analysis and wear test by four Ni-based self-fluxing alloy powders with different particle size mixed WC-Co powder by different weight ratio under reflowing temperature 950°C、1000°C and 1050°C by nitrogen in atmospheric pressure after thermal spray.
The results show that the dense coatings can be prepared and also exhibit good hardness and wear performance at reflowing temperature of 950℃. On the phase change, chromium increases the hardness of the coatings by the formation of hard phase with carbon and boron, nickel react with boron into a hard phase and the others change into Ni-solution. According to the elevated temperature, the hardness is decreased but the porosity is increasing because of the grain growth. On the wear resistance, each coating has worse hardness and better wears resistance, especially the coating adding WC-Co. The major wear mechanisms are based on abrasive wear、adhesive wear and surface fatigue. The TSM2002 coating after 950°C reflowing has the hardness which his more than 700Hv and exhibits the porosity under 1% which is the best coating with wearability among these four coatings.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 3
第二章 文獻回顧 4
2.1 熔射基本原理 4
2.2 高速火焰熔射系統 5
2.3 高速火焰熔射塗層 7
2.3.1 塗層結構之特性 7
2.3.2 其他熔射製程塗層比較 9
2.4 自熔合金 12
2.4.1 重熔處理 13
2.4.2 相關專利探討 15
2.5 磨耗概念 16
2.5.1 摩擦(Friction)與磨耗(Wear) 17
2.5.2 磨損(Abrasive Wear) 17
2.5.3 沖蝕(Erosive Wear) 17
2.5.4 粘著磨耗(Adhesive Wear) 19
2.5.5 腐蝕磨耗(Corrosive Wear) 19
2.5.6 表面疲勞(Surface Fatigue) 20
第三章 實驗方法 21
3.1 實驗流程 21
3.2 實驗設備與參數設計 22
3.2.1 熔射粉末 22
3.2.2 熔射設備與參數 22
3.3 試片前處理與後處理 24
3.4 塗層物性分析 26
3.4.1 金相試驗 26
3.4.2 SEM微結構 26
3.4.3 XRD相態分析 27
3.4.4 EPMA分析 27
3.4.5 孔隙率試驗 27
3.4.6 結合強度試驗 28
3.5 硬度試驗 29
3.6 磨耗試驗 30
第四章 結果與討論 32
4.1 粉末分析 32
4.2 塗層結構分析 37
4.3 塗層孔隙率與鍵結強度分析 41
4.4 塗層相態分析 44
4.5 塗層SEM與EPMA分析 47
4.6 微硬度分析 56
4.7 磨耗分析 57
第五章 結論 67
參考文獻 69
作者簡介 73
[1]W.A. Saywell, “Thermal Spray Industry Continues to Develop,” Metal Powder Report, vol. 51, Issue (4), 1996, pp.34-37.
[2]H. Herman, S. Sampath and R. McCune, “Thermal Spray:Current Status and Future Trends,” MRS Bulletin, 2000, pp.17-25.
[3]B.S. Schorr, K.J. Stein, and A.R. Marder, “Characterization of Thermal Spray Coatings,” Materials Characterization, vol. 42, Issue (2), 1999, pp.93-100.
[4]C.C. Berndt, “The Origins of Thermal Spray Literature,” Proceedings of the International Thermal Spray Conference, 2001, pp.1351-1360..
[5]P. Vuoristo, K. Niemi, A. Maekelas, and T. Maentylae, Proceedings of the 1993 National Thermal Spray Conference, 1993, pp.173-178.
[6]X. Provot, H. Burlet, M. Vardavoulias, M. Jeandin, C. Riachard, J. Lu, and D. Manesse, Proceedings of the 1993 National Thermal Spray Conference, 1993, pp. 159-166.
[7]R. Schwetzke and H. Kreye, Proceedings of 15th International Thermal Spray Conference, 1998, pp.187-192.
[8]B.H. Kear and G . Skandan, “Thermal Spray Processing of Nanoscale Materials,” Nanostructured Materials, vol. 8, Issue 6, 1997, pp. 765-769.
[9]D.A. Stewart, P.H. Shipway, and D.G.. McCartney, “Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC-Co coatings,” Wear, vol. 225-229, Issue PART II, 1999, pp.789-798.
[10]C. Herbst-Dederichs, “Thermal Spray Solutions for Diesel Engine Piston Rings,” Proceedings of the 2003 International Thermal Spray Conference, 2003, pp.129-188.
[11]G . Barbezat, “Low-Cost High-Performance Coatings Produced by Internal Plasma Spraying for the Production of High Efficiency Engines,” Proceedings of the 2003 International Thermal Spray Conference, 2003, pp.139-142.
[12]D. Cook, and M. Zaluzec, “Development of Thermal Spray for Automotive Cylinder Bores,” Proceedings of the 2003 International Thermal Spray Conference, 2003, pp.143-147.
[13]R. Gansert, “Influence of Powder Size in Aluminum Oxide Coatings for Use in the Semiconductor Industry,” Proceedings of the 2003 International Thermal Spray Conference, 2003, pp.159-161.
[14]R.W. Smith, and R. Knight, ” Thermal Spraying 2 Recent Advances in Thermal Spray Farming,” JOM-Jourmal Of The Minerals & Materials Society, vol. 48, Issue (4), 1996, pp.16-19.
[15]R. Walker and B. Barnes, “High-Velocity oxygen fuel Spray Coatings for Reclamation,” Materials & Design, vol. 48, Issue (6), 1994, pp.323-329.
[16]E.R. Sampson, “Thermal Spray Coatings for Corrosion Protection: An Overview,” MP, 1997, pp.27-30.
[17]B. Fitzsimons, “Thermal Spray Coatings for Corrosion Protection,” Corrosion Management, Dec 1995/Jan 1996, pp.12-17.
[18]張家華,金屬熔射/電鑄複合製模技術,碩士論文,國立台北科技大學製造科技研究所,台北,民國92年7月。
[19]林益生,高韌性奈米級WC/Co高速火焰熔射塗層之研究,碩士論文,國立台北科技大學機電整合研究所,台北,民國94年7月。
[20]C. Bartuli, T. Valente, F. Cipri, E. Bemporad, and M. Tului, “Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings,” Journal of Thermal Spray Technology, vol. 14, Issue (2), 2005, pp.187-195.
[21]B.H. Kear, R.K. Sadangi, M. Jain,, R. Yao, Z. Kalman, G . Skandan, and W.E. Mayo, “Thermal sprayed nanostructured WC/Co Hard coatings,” Journal of Thermal Spray Technology, vol. 9, Issue (3), 2000, pp.399-406.
[22]A H. Dent, S. DePalo, and S. Sampath, “Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co cermets with different binder phase contents,” Journal of Thermal Spray Technology, vol. 11, Issue (4), 2002, pp.551-558.
[23]T.C. Hanson, C.M. Hackett, and G .S. Settles, “Independent control of HVOF particle velocity and temperature,” Journal of Thermal Spray Technology, vol. 11, Issue (1), 2002, pp.75-85.
[24]W.C. Lih, S.H. Yang, C.Y. Su, S.C. Huang, I.C. Hsu, and M.S. Leu, “Effects of process parameters on molten particle speed and surface temperature and the properties of HVOF CrC/NiCr coating,” Surface Coating Technology, vol. 133-134, 2000, pp.54-60.
[25]H. Hamatani, Y. Ichiyama, and J. Kobayashi, “Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide,” Science and Technology of Advanced Materials, vol. 3, Issue (4), 2002, pp.319-326.
[26]蕭威典,熔射覆膜技術,台北:全華科技圖書股份有限公司,民國95年,第4-1~8-10頁。
[27]王家瓚,自熔合金粉末材料配比及金屬表面硬化方法,台灣電力股份有限公司,中華民國專利8210706案號,民國82年。
[28]M.P. Planche, H. Liao, B. Normand, and C. Coddet, “Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes,” Surface Coating Technology, vol. 200, 2005, pp. 2465-2473.
[29]S. Sampath and R. McCune, “Thermal-Spray Processing of Materials,” MRS Bulletin, 2000, pp.12-13.
[30]吳子健,熱噴塗技術與應用,北京:機械工業出版社, 2006年1月,第160-163頁。
[31]張平,熱噴塗材料,北京:國防工業出版社,2006年1月,第26-35頁。
[32]王新洪,表面熔融凝固強化技術-熱噴塗與堆焊技術,北京:化學工業出版社, 2005年7月,第355-361頁。
[33]S. Luyckx, and C.N. Machio, “Characterization of WC-VC-Co thermal spray powders and coatings,” International Journal of Refractory Metals and Hard Materials, vol. 25, Issue (1), 2007, pp.11-15.
[34]K. Sakata, K. Nakano, H. Miyahara, Y. Matsubara, and K.Ogi, “Microstructure control of thermally sprayed co-based self-fluxing alloy coatings by diffusion treatment,” Journal of Thermal Spray Technology, vol. 16, Issue (5-6), 2007, pp. 991-997.
[35]L. Gil, M.H. Staia, R. Guevara, E.S. Puchi-Cabrera, and D.B. Lewis, “Microstructural characterisation of NiWCrBSiC alloy coating produced by HVOF thermal spraying,” Surface Engineering, vol. 22, Issue (4), 2006, pp.304-313 .
[36]F. Otsubo, H. Era, and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron,” Journal of Thermal Spray Technology, vol. 9, Issue (1), 2000, pp.107-113.
[37]S. C. Modi, and E. Calla, ”Structure & Properties of HVOF Sprayed NiCrBSi Coatings,” Proceedings of the International Thermal Spray Conference, 2001, pp. 281-284.
[38]F. Otsubo, H. Era, and K. Kishitake, “Interface reaction between nickel-base self-fluxing alloy coating and steel substrate,” Journal of Thermal Spray Technology, vol. 9, Issue (2), 2000, pp.259-263.
[39]L. Gil, and M.H. Staia, “Influence of HVOF parameters on the corrosion resistance of NiWCrBSi coatings,” Thin Solid Films, vol. 420-421, Issue (2), 2002, pp.446-454.
[40]J.M. Miguel, J.M. Guilemany, and S. Vizcaino, “Tribological study of NiCrBSi coating obtained by different processes,” Tribology International, vol. 36, 2003, pp.181-187.
[41]Shieh, Yune-Hua, Wang, Jia-Tzann, Shih, Han C., Wu, Shinn-Tyan, “Alloying and post-heat-treatment of thermal-sprayed coatings of self-fluxing alloys,” Surface and Coatings Technology, vol. 58, Issue (1), 1993, pp.73-77.
[42]第一高周波工業股份有限公司(日本)、殷德實業有限公司(台灣),合金包覆鍋爐構件及自熔合金包覆鍋爐構件之熔接施工方法,專利公告號:l263014,中華民國專利。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊