跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡吉鴻
研究生(外文):chien chi hung
論文名稱:磁控濺鍍法製備氧化矽、氧化鋯與矽酸鋯薄膜及其性質之研究
論文名稱(外文):Silica、Zirconia and Zirconium Silicate Thin Films Prepared by Magnetron Sputtering
指導教授:郭東昊
指導教授(外文):Dong-Hau Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:105
中文關鍵詞:氧化鋯氧化矽薄膜
外文關鍵詞:ZirconiaSilicathin films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高介電氧化鋯薄膜是金氧半電晶體(Metal-oxide-semiconductor transistor,MOS)的閘極氧化物及動態隨機存取記憶體(dynamic random access memory, DRAM)的電容器中具有潛力的材料。本研究是利用磁控濺鍍法(Magnetron sputtering deposition)在P型矽晶片Si(100)以及玻璃為基板上將沈積的氧化鋯薄膜、氧化矽薄膜及矽酸鋯複合薄膜等做為介電層應用的特性研究。我們利用氧化鋯粉末、氧化矽粉末,以及兩者以不同體積比混合的粉末來製作磁控濺鍍所需要的靶材。在實驗規劃中,藉著改變基板溫度、濺鍍功率、退火溫度等參數對鍍膜的各項特性進行量測分析,包括:顯微結構、成長速率、機械性質、光學特性及電特性等。
實驗結果顯示,除了靶材中添加10 %SiO2有產生結晶之外,其餘系統皆為表面平坦的非晶質膜;鍍膜成長速率隨靶材SiO2含量、濺鍍功率增加而提高,最高達10 nm/min。鍍膜的內應力為壓應力,與玻璃基板的附著力良好。臨界荷重值最高可達21.2 N,鍍膜硬度值為2~12 GPa之間。折射率最高可達2.17,穿透率受靶材成分所影響,以SiO2系統最高,達90 %。鍍膜相對介電常數最高為32,電阻係數受靶材成分影響其值在10^9ohm-cm以上,退火處理有助於提高其值。崩潰電場皆在3 MV/cm以上。

The developments of future gate oxide of MOS device for ULSI technology and next-generation capacitor of DRAM devices for memory storage require new dielectric materials. There is significant interest in using ZrO2 for the fabrication of charge storage insulators in the next generation memories.
In this study, thin films of zirconia, silica, and zirconium silicate were deposited on Si(100) and glass substrates by R.F. magnetron sputtering from zirconia, silica and zirconium silicate composite ceramic targets instead of metal targets. This research was focused on the evaluations of film growth kinetics, microstructure, mechanical properties, optical properties, and electrical properties.
The results showed the films were structurally amorphous, besides 90 ZrO2-10 SiO2 system. The surface morphology of all films were smooth and dense. Their growth rates increased as the silica content and R.F. power increased. The maximum growth rate was nearly 10 nm/min. Regarding to mechanical properties, residual stress was compressive for all films, the hardness of thin films was in the range of 2~12 GPa, and there was a good adhesion to glass substrates with a the maximum critical load of 21.2 N. The refraction index showed a maximum value of 2.17 for pure ZrO2 system. The transmittance with a maximum value of 90 % for pure SiO2 system was influenced by ZrO2 content in targets. In respect of electric properties, the dielectric constant which varied with target composition had a highest of 32. The resistivity was higher than 109 ohm-cm, with a higher value after annealing. The breakdown fields were meassured with values higher than 3 MV/cm.

目 錄
頁次
中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
目錄……………………………………………………………………..Ⅲ
圖目錄…………………………………………………………………..Ⅵ
表目錄……………………………………………………………….. XV
第一章 緒論
1.1 前言…………………………………………………………….1
1.2 研究目的與內容……………………………………………….2
第二章 理論基礎與文獻回顧………………………………………… 3
2.1 氧化矽與氧化鋯……………………………………………….3
2.2 SiO2薄膜系統………………………………………………….3
2.2.1 SiO2結構特性………………………………………….3
2.2.2 SiO2薄膜前人研究…………………………………….4
2.3 ZrO2薄膜系統………………………………………………….5
2.3.1 ZrO2結構特性………………………………………….5
2.3.2 ZrO2薄膜前人研究…………………………………….6
2.4 介電薄膜的製備方式………………………………………….7
2.4.1 濺鍍法(sputtering) [67-68]………….……………8
2.4.2 雷射剝鍍法(Laser ablation)[69-70]………………8
2.4.3 離子束濺鍍[68-69]……………………………………9
2.4.4 有機金屬化學氣相沈積法(MOCVD)[71]………………9
2.4.5 有機金屬分解法與溶液凝膠法[72-73]…………….10
2.5 物理鍍膜技術概述[74]………………………………………10
2.5.1 電漿理論[75-76]…………………………………….10
2.5.2 射頻磁控濺鍍原理[74]………………………………12
2.5.3 薄膜沈積機制[76]……………………………………13
2.5.4 濺鍍率[79]……………………………………………16
2.5.5 基板溫度效應…………………………………………16
2.5.6 熱膨脹係數效應[80]…………………………………17
2.6 電性機制……………………………………………………..17
2.6.1 介電性[81-82]……………………………………….17
2.6.2 極化機制[81,83-84]…………………………………18
2.6.3 漏電流機制[80,83]………………………………….19
2.6.4 依時性介電崩潰[85]…………………………………20
2.6.5 介電強度[84]…………………………………………20
2.6.6 介電損失………………………………………………21
第三章 實驗方法與步驟……………………………………………..34
3.1 實驗系統設備說明…………………………………………..34
3.2 實驗流程……………………………………………………..35
3.3 靶材製作與材料選擇………………………………………..35
3.3.1 靶材製作………………………………………………35
3.3.2 材料選擇………………………………………………36
3.4 基板種類與準備……………………………………………..36
3.4.1 基板種類………………………………………………36
3.4.2 基板準備………………………………………………36
3.5 薄膜沈積……………………………………………………..37
3.5.1 實驗參數設定與沈積步驟……………………………37
3.6 薄膜性質量測與分析………………………………………..37
3.6.1 分析設備與方法………………………………………38
第四章 結果與討論…………………………………………………..44
4.1 XRD結構分析………………………………………………...44
4.2 表面型態觀察………………………………………………..44
4.3 成長速率研究………………………………………………..45
4.4 殘留應力研究………………………………………………..46
4.5 硬度以及楊氏係數量測……………………………………..46
4.6 刮痕臨界荷重測試…………………………………………..49
4.7 折射率研究…………………………………………………..50
4.8 穿透率研究…………………………………………………..51
4.9 相對介電常數與介電損失量測……………………………..52
4.10 電阻係數量測……………………………………………….53
4.11 退火後相對介電常數與介電損失量測…………………….53
4.12 退火後電阻係數量測……………………………………….54
4.13 退火前後崩潰電場量測…………………………………….54
第五章 結論…………………………………………………………..97
參考文獻………………………………………………………………..99
致謝…………………………………………………………………….105

參考文獻:
1. P. K. Roy and I. C. Kizilyalli, Appl. Phys. Lett. 72(1998)2835
2. G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E.
3. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Mater. Sci. Eng., R. 22(1998)269
4. S. A. Campbell, H. S. Kim, D.C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, IBM J. Res. Dev. 43(1999)383
5. S. C. Choi, M. H. Cho, S. W. Whangho, C. N. Whang, S. B. Kang, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett. 71(1997)903
6. M. Copel, M. Gribelyyuk, and E. Gusev, Appl. Phys. Lett. 76 (2000) 436
7. M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, Appl. Phys. Lett. 77(2000)1885
8. T. Nagi, W. J. Qi, R. Sharma, J. Fretwell, X. Chen, J. C. Lee, and S. Banerjee, Appl. Phys. Lett. 76(2000)502
9. M. Agarwal, M. R. De Guire, and A. H. heuer, J. Am. Ceram. Soc. 80 (1997)2967
10. K. Eisenbeiser, J. M. Finder, Z. Yu, J.Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C.D. Overgaard, Appl. Phys. Lett. 76(2000)1324
11. R. A. Mckee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett.
12. S. M. Sze, VLSI Technology, 2nd Ed., CH.6, McGraw-Hill, 1988
13. F. S. Becker, et al., J. of Vacuum Scienceand Tecknology B, Vol. 5, No.6, 1987,p.1555.
14. J. Mort, “Plasma Deposition Thin Films”,CRC Press, Inc., USA, 1986
15. Van de ven, E.P.G.T. Solid State Technol., 24[4] 167 (1981)
16. Summers, D., Solid State Technol., 26, 137, 1983
17. Schanfield, S. and Bay, S.,J. Electrochem. Soc., 131, 2202, 1984
18. Dottarar, S.S., Plasma Processing , Mathad, G. S., Schwartz, G.C., and Smolinsky, G., Eds., Electrochemical Society, Pennington, N.J., 1983, 160
19. Adams, A.C., Alexander, F.B., Capio, C.D., and Smith, T.E., J. Electrochem. Soc., 128 1545.
20. R., E. Hollahan, J. Electrochem. Soc., 126, 930, 1979.
21. Sabin, E. W. and Ramiller, C.L., Plasma Processing, Eds. G.S. Mathad, G.C. Schwartz, and G. Smolinsky, Eds., Electrochemical Society , Pennington, N.J.,1983, 143.
22. R.S. Rosler, and G.M. Engle, Solid State Technol., 24[4] 172 (1981).
23. I. Avigal, Solid State Technol., 26 [10] 217 (1983).
24. J. E. Tong and K. Schertenluib, and Carpio, R.A., Solid State Technol., 27[1] 161 (1984).
25. J. Batey and E. Tierney, J. Appl. Phys., 60, 3136, 1986.
26. C. D. Dobson, A. Kiermasz, K. Beekman, R. J. Wilby, Semicon. Int. 1994, 17, 85.
27. C. Falcony, J. C. Alonso, A. Ortiz, M. Garcia, E. P. Zironi, J. Rickards, J. Vac., Sci. Technol., A.11, 2945, 1993.
28. D. R. Secrist and J. D. Mackenzie, “Deposition of Silica Films by the Glow Discharge Technique”, J. Electrochem. Soc., 113, 914 (1966).
29. U. Mackens and U. Merkt, "Plasma Enhanced Chemical Vapor Deposition of Metal-Oxide-Semiconductor Structures on InSb," Thin Solid Films, 97, 53 (1982).
30. J. Woodward, D.C. Caneron, L.D. Irving, and G.R. Jones, Thin Solid Film, 85, 61, 1981.
31. U. Mackens and U. Merkt, Thin Solid Films, 97, 53, 1982.
32. E. B. Priestley and P. J. Call, Thin Solid Films, 69, 39, 1980.
33. S. P. Mukherjee and P. E. Evans, Thin Solid Films, 14, 105, 1972.
34. D. R. Secrist and J. D. Mackenzie, J. Electrochem. Soc., 113, 914, 1966.
35. S. W. Ing, Jr. and W. J. Davern, Electrochem. Soc., 112, 284, 1965.
36. F. Fracassi, R. d`Agostino, and P. Favia, "Plasma Enhanced Chemical Vapor Deposition of Organosilicon Thin Films From Tetraethoxy-silane-Oxygen Feeds, " J. Electrochem. Soc. 139, 2636 (1992).
37. F. Templier, L. Vallier, R. Madar, J.-C. Oberlin, R. A. B. Devine, Thin Solid Films, 241, 251 (1994).
38. G. Tochitani, M. Shimozuma, H. Tagashira, J. Vac. Sci. Technol. A. 11, 400, 1993.
39. Satake, H., Yasuda, N. and Toriumi. A., Ext. Abst. SSDM ’95,1995,264,.
40. Murakami, Y., Shiota. T. and Shingyouji, T., J. Appl. Phys., 1994. 75, 5302.
41. Ohmi, K., Nakamura, k., Futatsuki. T. and Ohmi, T., VLSI Tech Dig., 1994,109.
42. K.V.S.R. Apparao. N.K. Sahoo. T.C. Bagchi. Thin Solid Films 129 (1985) L71
43. A. Duparre, E. Welsch, H.G. Walther, N. Kaiser, H. Muller, E. Hacker, H. Lauth, J. Meyer, P. Weissbrodt, Thin Solid Films 187 (1990) 275
44. A.S. Kao, C. Hwang, J. Vac. Sci. Technol. A 8(1990) 3289.
45. A.K. Stamper, D.W. Greve, T.E. Schlesinger, J. Appl. Phys. 70 (1991)2040.
46. H. Fukumoto, M. Monita, Y. Osaka, J. Appl. Phys.65 (1989) 5210.
47. E.P. Turevskaya, N. Ya. Turova, V.G. Kessler, M.I. Kochetov, S.G. Prutchenko, Yu. Ya, Tomashpolsky, Supercond. Phys. Chem. Tech. 3 (1990) 14.
48. J.W. Lee, T.E. Schlesinger, A.K. Stamper, M. Migliuolo, D.W. Greve, D. Langhlin, J. Appl. Phys. 64 (1988)6502.
49. W.H. Lowdermilk, D. Milan, F. Rainer, Thin Solid Films 73 (1980)155.
50. K.J. Sladek, W.W. Gibert, in: F.A. Glaski(ed.), Proc. Third. Int. Conf. on Chemical Vapor Deposition, Salt Lake City, UT, April 24-27, 1992, American Nuclear Society, Hinsdale, Illinois, 1972, pp. 215.
51. V.K. Khanna, R.K. Nahar, Appl. Surf. Sci. 28 (1987) 247.
52. William D. Sproul et. al., Surface and Coating Technology 89 (1997)10-15
53. P. Yashar et. al., Surface and Coatings Technology 84-95 (1997) 333-338
54. Pengtao Gao, L.J. Meng , M.P. dos Santos , V. Teixeira , M. Andritschky ,Thin Solid Films 377-378 (2000) 557-561
55. Klaus Goedicke, Jorn-Steffen Liebig, Olaf Zywitzki, Hagen Sahm,Thin Solid Films 377-378 (2000)37-42
56. H. Tomaszewski, J. Haemers, N. De Roo, J. Denul, and R. De Gryse, Thin Solid Films 293 (1997) 67-74
57. M. Hartmanova, K. Gmucova , and I. Thurzo, Solid State Ionics 130 (2000) 105-110
58.. S. Ben Amor et al.,Materials Science and Engineering B57 (1998) 28~39
59. W. Pawlewicz and D.D. Hays. Thin Solid Films 94 (1982) 31-45
60. G. Beiβe, B. Keiper, S. Weiβmantel , H. Johansen , R. Scholz , and T. Martini , Thin Solid Films , 241 (1994) 119-125
61. M. G. Krishna, K. Narasimha, and S. Mohan ,Thin Solid Films 207 (1992) 248-251
62. T. Koch and P. Ziemann. Thin Solid Films 303 (1997) 122-127
63. J.S. Kim, H.A. Marzouk, P.J. Reucroft , Thin Solid Films 254 (1995) 33-38
64. Antonino Gulino , Giuseppe Compagnini, Ruaaell G. Egdell, Ignazio Fragala, Thin Solid Films 352 (1999) 73-76
65. G. Garcia , A. Figueras , R.I. Merino , V.M. Orera , J. Llibre, Thin Solid Films 370 (2000) 173-178
66. D.C. Bradley , M.M. Faktor. Trans. Faraday Soc. 55,(1959), 2117
67. B. Chapman, “Glow Discharge Process” , John Wiley & Sons, Inc., (1980)
68. O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, MRS Bulletin, 20, (1996) 25
69. 吳泰伯, “強介電薄膜之物理氣相沈積技術”, 工業材料, 190 (1996) 135
70. J. Dieleman, E. van de Riet, and J. C. S. Kools, “Laser Ablation Deposition:Mechanism and Application”, Jpn. J. Appl. Phys., 31(6B), (1992)1964
71. S. K. Dey, and P. V. Alluri, “PE-MOCVD of Dielectric Thin Films:Challenge and Opportunities”, MRS Bulletin, 20(6), (1996) 44.
72. B. A. Tuttle and R. W. Schwartz, “Solution Deposition of Ferroelectric Thin Films”, MRS Bulletin, 20(6), (1996) 49.
73. 陳三元, “強介電薄膜之液相化學法製作”, 工業材料, 108(1995) 100
74. John E. Mahan , 2000, “PHYSICAL VAPOR DEPOSITION OF THIN FILMS”, John Wiley &Sons, Inc.
75. Mitsuharu Konuma, “Film Deposition by Plasma Techniques”, Springer-Verlag Berlin Heidelberg 1992.
76. 莊達人,”VLSI 製造技術”, 高立圖書有限公司
77. K. Chopra, Thin Film Phenomena, Robert & Krieger, 1969
78. J. B. Hudson, Surface Science, Ch17, Butterworth-Heinemann, 1992
79. 賴耿陽編譯”薄膜製作工藝學”,復漢出版社,1994.
80. Milton Ohring, “The Materials Science of Thin Films”, Academic Press, 1992
81. 吳朗,”電子陶瓷-介電”,全欣資訊圖書, 1994
82. 汪建民,”陶瓷技術手冊”,中華民國產業科技發展協進會, 1994
83. L.L.Hench and J.K.West, “Principles of Electronic Ceramics”, John Wiley & Sons, 1990
84.W.D.Kingery, H.K.Bowen, and D.R.Uhlmann, “Introduction to Ceramics”, John Wiley & Sons Inc., 1976
85. R. Waser, “Polarization, Conduction, and Breakdown in nonferroelectric Perovskite Thin Films”, Kluwer Academic., 1995
86. 國家毫微米實驗室,積體電路製程訓練班講義(Ⅰ), 2000
87. 楊東記,”以電漿化學氣相沈積法蒸鍍SiO2及Si(C,N)薄膜之研究”,東華大學碩士論文,1998

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top