|
Azzalini, A. (1985), “A Class of Distributions Which Includes the Normal Ones,” Scandinavian Journal of Statistics, 12, 171-178.
Azzalini, A. (1986), “Further Results on a Class of Distributions Which Includes the Normal Ones,” Statistica 46, 199-208.
Azzalini, A., and Capitaino, A. (2003), “Distributions Generated by Perturbation of Symmetry With Emphasis on a Multivariate Skew t-Distribution,” Journal of the Royal Statistical Society. Ser. B, 65, 367-389.
Basord, K. E., Greenway D. R., McLachlan G. J., and Peel D. (1997), “Standard Errors of Fitted Means Under Normal Mixture,” Computational Statistics, 12, 1-17.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm (with discussion),” Journal of the Royal Statistical Society. Ser. B, 39, 1-38.
Flegal, K. M., Carroll, M. D., Ogden, C. L., and Johnson, C. L. (2002), “Prevalence and Trends in Obesity among US Adults, 1999-2000,” Journal of the American Medical Association, 288, 1723-1727.
Fraley, C, and Raftery, A. E. (2002), “Model-Based Clustering, Discriminant Analy- sis, and Density Estimation,” Journal of the American Statistical Association, 97, 611-631.
Green, P. J., (1995), “Reversible Jump MCMC Computation and Bayesian Model Determination,” Biometrika, 82, 711-732.
Henze, N. (1986), “A Probabilistic Representation of the Skew-Normal Distribu- tion,” Scandinavian Journal of Statistics, 13, 271-275.
Jones, M. C., and Faddy, M. J. (2003), “A Skew Extension of the t-Distribution, With Applications,” Journal of the Royal Statistical Society. Ser. B, 65, 159- 174.
Lin, T. I., Lee, J. C., and Ni, H. F. (2004), “Bayesian Analysis of Mixture Modelling Using the Multivariate t Distribution,” Statistics and Computing, 14, 119-130.
Lin, T. I., Lee, J.C., and Yen, S. Y. (2006), “Finite Mixture Modelling Using the Skew Normal Distribution,” Statistica Sinica (To appear).
Liu, C. H., and Rubin, D. B. (1994), “The ECME Algorithm: a Simple Extension of EM and ECM With Faster Monotone Convergence,” Biometrika, 81, 633-648.
Liu, C. H., Rubin, D. B., and Wu, Y. (1998). “Parameter Expansion to Accelerate EM: the PX-EM Algorithm,” Biometrika, 85, 755-770.
McLachlan, G. J. and Basord, K. E. (1988), Mixture Models: Inference and Appli- cation to Clustering, Marcel Dekker, New York.
McLachlan, G. J., and Peel D. (2000), Finite Mixture Models, Wiely, New York. Meng, X. L., and Rubin, D. B. (1993), “Maximum Likelihood Estimation via the ECM Algorithm: A General Framework,” Biometrika, 80, 267-78.
Peel, D., and McLachlan, G.J. (2000), “Robust Mixture Modeling Using the t Distribution,” Statistics and Computing 10, 339-348.
Richardson, S., and Green, P. J. (1997), “On Bayesian Analysis of Mixtures With an Unknown Number of Components (with discussion),”Journal of the Royal Statistical Society. Ser. B, 59, 731-792.
Shoham, S. (2002). “Robust Clustering by Deterministic Agglomeration EM of Mixtures of Multivariate t-Distributions,” Pattern Recognition, 35, 1127-1142.
Shoham, S., Fellows, M. R., and Normann R. A. (2003), “Robust, Automatic Spike Sorting Using Mixtures of Multivariate t-Distributions,” Journal of Neuro- science Methods, 127, 111-122.
Titterington, D. M., Smith, A. F. M. and Markov, U. E. (1985), Statistical Analysis of Finite Mixture Distributions, Wiely, New York.
Wang, H. X., Zhang, Q. B., Luo, B., and Wei, S. (2004), “Robust Mixture Mod- elling Using Multivariate t Distribution With Missing Information”, Pattern Recognition Letter, 25, 701-710.
Zacks, S. (1971), The Theory of Statistical Inference, Wiley, New York. Zhang, Z., Chan, K. L., Wu, Y., and Cen, C. B. (2004), “Learning a Multivari- ate Gaussian Mixture Model With the Reversible Jump MCMC Algorithm,” Statistics and Computing, 14, 343-355.
|