跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭立暉
研究生(外文):Li-Huei Peng
論文名稱:以電鍍法析鍍銅銦鎵硒之研究
論文名稱(外文):Formation of CuInGaSe 2 by eletrodeposition
指導教授:陳文照陳文照引用關係
指導教授(外文):Wen-Jauh Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:94
中文關鍵詞:電鍍法銅銦鎵硒
外文關鍵詞:electrodepositionCIGS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本 實 驗 以 電 鍍 法 製 備 銅 銦 鎵 硒 (CIGS) 。 首 先 於 不 銹 鋼 (stainless
steel,S.S.)片上先進行銅(Cu)之析鍍,並改變不同參數,找出鍍銅較佳條件。
再利用田口法之 L18 表進行銦(In)及鎵(Ga)之析鍍,藉以找出最佳參數,
接著將已析鍍之 In/Cu/S.S.及 In/Ga/Cu/S.S.試片進行硒化處理,條件為在氬
氣氛下 500℃並持溫 1 小時。使用場發掃瞄式電子顯微鏡(FE-SEM)、X 光
繞射儀(XRD)及能量分散式光譜儀(EDS)來分析 CIGS 之表面型貌成份及結
構。
結果顯示,以田口法析鍍 Cu/In 層時之最佳參數是︰電流為 25mA,
pH=11、InCl 3 濃度為 150mM、酒石酸鉀鈉濃度為 1M、時間為 30min。而
以田口法析鍍之 Cu/Ga 層時之最佳條件是︰電流為 60mA、pH=11.5、GaCl 3
濃度為 75mM、檸檬酸鈉濃度為 1M、電鍍時間為 40min。
以 XRD 觀察硒化過後之 In/Cu/S.S.試片發現到存有 CGS 相,而
In/Ga/Cu/S.S.之結構,發現到存有 CGS 相。在 EDS 成份分析下,發現
In/Ga/Cu/S.S.的 In 含量較少,使得 In/Ga/Cu/S.S.之 In 含量較少,而無法經
過硒化處理得到 CIGS 相。
In this study, the CuInGaSe 2 is prepared by electrodeposition. First of all,
Cu is electrodeposited onto stainless steel and to find out the best condition to
deposit Cu by changing different parameters. Second, Indium and Gallium
were electrodeposited by using Orthogonal array of L 18 . Final, that the
In/Cu/S.S. and In/Ga/Cu/S.S be selenized, and the selenized condition is heated
at 500℃ for 1hour in Argon atmosphere. The CIGS should be characterized by
XRD, FE-SEM and EDS.
The results show the best parameters for the electrodeposition of Cu/In
layer by Taguchi method (current : 25mA, pH : 11, InCl 3 solution: 150mM and
KNaC 4 H 4 O 6.4H 2 O solution: 1M and the deposition time is 30 minutes.) The
results show the best parameters for the electrodeposition of Cu/Ga layer by
Taguchi method (current : 60mA, pH : 11.5, GaCl 3 solution : 75mM and
C 6 H 5 Na 3 O 7 solution : 1M and the deposition time is 40 minutes.)
After selenided, by using XRD, CIS phase has be found in In/Cu/S.S. and
CGS phase has be found in In/Ga/Cu/S.S.. After EDS analysis, the content of
In in In/Ga/Cu/S.S. is too low to make it to be CIGS.
IV
目錄
摘要................................................................................................... I
Abstract ............................................................................................ II
誌謝.................................................................................................III
目錄.................................................................................................IV
圖目錄........................................................................................... VII
表目錄..............................................................................................X
第一章 緒論 ..............................................................................1
1-1 前言................................................................................................ 1
1-2 研究動機........................................................................................ 2
1-3 研究目的........................................................................................ 3
第二章 原理介紹 ......................................................................5
2-1 太陽能電池之簡介........................................................................ 5
2-1-1 CI(G)S 太陽能電池之簡介 ............................................... 7
2-1-2 CI(G)S 薄膜之基本性質 ................................................... 9
2-2 CI(G)S 太陽能電池製備方式之簡介 ..........................................11
2-2-1 共蒸鍍(Co-evaporation) ...................................................11
2-2-2 濺鍍(sputtering) ............................................................... 12
2-2-3 硒化合成(selenization) .................................................... 13
V
2-2-4 噴塗(Spray Pyrolysis)................................................. 14
2-2-5 電鍍(Electrodeposition) ................................................... 14
2-3 電鍍之介紹.................................................................................. 18
2-3-1 電鍍法簡介及原理.......................................................... 18
2-3-2 脈衝電鍍之簡介.............................................................. 27
第三章 實驗步驟與分析方法 ................................................31
3-1 藥品與儀器.................................................................................. 31
3-1-1 實驗藥品.......................................................................... 31
3-1-2 實驗儀器.......................................................................... 32
3-2 實驗步驟...................................................................................... 34
3-2-1 前處理.............................................................................. 34
3-2-2 電鍍銅.............................................................................. 34
3-2-3 電鍍 Cu/In........................................................................ 34
3-2-4 電鍍 Cu/Ga....................................................................... 35
3-2-5 電鍍 Cu/Ga/In .................................................................. 35
3-2-6 硒化處理.......................................................................... 35
3-2-7 試片分析.......................................................................... 35
第四章 結果與討論 ................................................................37
4-1 電鍍銅.......................................................................................... 37
4-2 CuInSe .......................................................................................... 46
4-2-1 以 L18 表設計 In 電鍍參數 ............................................ 46
VI
4-2-2 Cu/In 之 SEM 表面形貌分析.......................................... 48
4-2-3 Cu/In 之 XRD 繞射分析 ................................................. 49
4-2-4 Cu/In 經硒化後之 SEM 表面形貌分析.......................... 59
4-2-5 Cu/In 經硒化後之 XRD 繞射分析 ................................. 59
4-3 CuInGaSe ..................................................................................... 62
4-3-1 以 L18 表設計 Ga 電鍍參數........................................... 62
4-3-2 Cu/Ga 之 SEM 表面形貌分析 ........................................ 63
4-3-3 Cu/Ga 之 XRD 繞射分析 ................................................ 64
4-3-4 Cu/Ga/In 經硒化後之 SEM 表面形貌分析.................... 74
4-3-5 Cu/Ga/In 經硒化後之 XRD 繞射分析............................ 74
第五章 結論 ............................................................................77
參考文獻.........................................................................................78
[1] Ingrid Repins, Miguel A. Contreras, Brian Egaas, Clay DeHart, John
Scharf, Craig L. Perkins, Bobby To and Rommel Noufi, 2008 ,
“19.9%-efficient ZnO/CdS/CuInGaSe 2 Solar Cell with 81.2% Fill
Factor”. Prog. Photovolt: Res. Appl., 16,pp. 235–239.
[2] R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi,
J.R. Sites., 2000, “15.4% CuIn 1-x Ga x Se 2 -based photovoltaic cells from
solution-based precursor films”,Thin Solid Films 361–362, pp.396–399.
[3] 莊嘉琛,2003,太陽能工程-太陽電池篇, 全華科技圖書
[4] Schultz, O., Mette, A., Preu, R. and Gunz, S. W., 2007, “Silicon solar
cells with screen-printed front side metallization exceeding 19%
efficiency”, In Pro-ceedings of the 22nd European Photovoltaic Solar
Energy Conference(PVSEC), pp. 980–984.
[5] S. M. Sze, 2002, “Semiconductor Devices Physics and Technology” , 2 nd
ed, John Wiley & Sons New York, chap 9-5-2.
[6] 張義峰譯, 1980, 太陽電池之應用, 徐氏基金會.
[7] 邱秋燕,廖曰淳,楊慕震,黃渼雯,羅一玲,2008, “銅銦鎵硒(CIGS)
太陽能電池-非真空製程技術發展簡介”,工業材料雜誌,264 期,頁
79–88,12 月。
[8] Rockett, A., et al., 1999,“Na incorporation in Mo and CuInSe 2 from
production processes”, Solar energy materials and solar cells,. 59:
pp.255–264.
[9] Kimura, R., T. Nakada, and P. Fons, 2001,“Photoluminescence properties
of sodium incorporation in CuInSe 2 and CuIn 3 Se 5 thin films”, Solar
energy materials and solar cells, 67: pp. 289–295.
[10] Braunger, D., et al., 2000,“Influence of sodium on the growth of
polycrystalline Cu(In,Ga)Se 2 thin films”,Thin solid films, 361–362:pp.
161–166.
[11] Ruckh, M., et al., 1994,“Influence of substrates on the electrical
properties of Cu(In,Ga)Se 2 thin films”, First WCPEC,: pp. 156–159.
[12] Shay, J.L. and J.H. Wernick, 1975,“Ternary chalcopyrite
semiconductors:Growth, Electronic properties, and applications”.
[13] W. Shockley, H. J. Queisser, 1961, J. Appl. Phys., 32, 510.
[14] Capasso, F. and G. Maragaritondo, 1987,“Heterojunction band
discontinuities: Physics and device application”, Elsevier science,.
[15] Schaffler, R. and H.W. Schock, “High mobility ZnO:Al thin films
grown by reactive DC magnetron sputtering”
[16] Muller, H. J., 1993. Semiconductors for Solar Cells, Artech House,
Boston,.
[17] M. Kaelin, D. Rudmann, A. N. Tiwari, 2004, Solar Energy 77, 749-756.
[18] Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM.,
1994,Applied Physics Letters, 65, pp.198–200
[19] G.S. Chen , J.C. Yang , Y.C. Chan , L.C. Yang , Welson Huang, 2009,
“Another route to fabricate single-phase chalcogenides by
post-selenization of Cu–In–Ga precursors sputter deposited from a single
ternary target”, Solar Energy Materials & Solar Cells 93, pp.1351–1355
[20] Kushiya K, Ohshita M, Hara I, Tanaka Y, Sang B,
Nagoya Y, Tachiyuki M, Yamase O. , 2003,“Yield issue on
the fabrication of 30cm×30cm-sized CIGS-based thin-film
modules”, Solar Energy Materials and Solar Cells, 75(1-2),
pp.171-178.
[21] Tomoaki Terasako, Seiki Inoue, Tetsuya Kariya, Sho Shirakata, 2007,
“Three-stage growth of Cu–In–Se polycrystalline thinfilms by chemical
spray pyrolysis”, Solar Energy Materials & Solar Cells
91,pp.1152–1159.
[22] R. N. Bhattacharya, 1984, Journal of The Electrochemical Society, 130,
pp.2040.
[23] R. Ugarte, R. Schrebler and R. Cordova, 1999, Thin Solid
Films, 340,117.
[24] R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi,
J.R. Sites, 2000, “15.4% CuIn 1-x Ga x Se 2 -based photovoltaic cells
fromsolution-based precursor films”, Thin Solid Films ,pp.361-362
[25] A. M. Fernandez, R. N. Bhattacharya, 2005, Electrodeposition of CuIn 1-x
Ga x Se 2 precursor films: optimization of film composition and
morphology, Thin Solid Films, 474, pp.10-13
[26] Yusuke Oda, Takashi Minemoto, and Hideyuki Takakura,
2008 ,“ Electrodeposition of Crack-Free CuGaSe 2 Thin Films fromSingle
Bath”, Journal of The Electrochemical Society, 155 (5) ,pp.292-295.
[27] C.Y. Shi, Yun Sun, Qing He, F.Y. Li, J.C. Zhao, 2009, “Cu(In,Ga)Se 2 solar
cells on stainless-steel substrates covered with ZnO diffusion barriers”,
Solar Energy Materials & Solar Cells 93,pp.654–656.
[28] M. Hartmann, M. Schmidt, A. Jasenek, H.W. Schock, F. Kessler, K. Herz,
M.Powalla, 2000, “Flexible and light weight substrates for Cu(In,Ga)Se 2
solar cells andmodules”, in: Conference Record of the 28th IEEE
Photovoltaic Specialists Conference, pp. 638–641.
[29] P. Jackson, P.O. Grabitz, A. Strohm, G. Bilger, H.W. Schock, 2004,
“Contamination of Cu(In,Ga)Se 2 solar cells by metallic substrate
elements”, in: 19th EuropeanPhotovoltaic Solar Energy Conference, pp.
1936–1939.
[30] Serdar Aksu, Jiaxiong Wang, and Bulent M. Basol,
2009 ,“Electrodeposition of In–Se and Ga–Se Thin Films for Preparation
of CIGS Solar Cells”, Electrochemical and Solid-State Letters, 12 (5)
pp.33-35.
[31] C.Y. Shi, Yun Sun, Qing He, F.Y. Li, J.C. Zhao, 2009, “Cu(In,Ga)Se 2 solar
cells on stainless-steel substrates covered with ZnO diffusion barriers”,
Solar Energy Materials & Solar Cells, 93 ,pp.654–656.
[32] J.S. Wellings,, A.P. Samantilleke, S.N. Heavens, P. Warren, I.M.
Dharmadasa, 2009, “Electrodeposition of CuInSe 2 from ethylene glycol at
150 ℃”, Solar Energy Materials & Solar Cells .
[33] L. Thouin, S. Rouquette-Sanchez, and J. Vedel, 10th Europ. ,
1991Photovoltaic Solar Energy Conf., Lisbon (Portugal) ,pp. 893.
[34] E. Tzvetkova, N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova, and K.
Kochev, 1997, Thin Solid Films 311, 101.
[35] F. Chraibi , M. Fahoume , A. Ennaoui , and J. L. Delplancke , 2001,
“Influence of Citrate Ions as Complexing Agent for Electrodeposition of
CuInSe 2 Thin Films”, phys. stat. sol. (a), 186, No. 3, pp.373–381.
[36] M.S. Chandrasekar, Malathy Pushpavanam, 2008 ,“Pulse and pulse
reverse plating—Conceptual, advantages and applications”,
Electrochimica Acta, 53 ,pp. 3313–3322 .
[37] Saburo Endo, Yashushi Nagahori, and Shigetaka Nomura, 1996,
“Preparation of CuInSe 2 Thin Films by the Pulse-Plated
Electrodeposition”, Jpn. J. Appl. Phys., Vol. 35, pp. 1101-1103.
[38] Shigetaka Nomura, Kazuhiko Nishiyama, Kenji Tanaka, Motoya
Sakakibara, Masatoshi Ohtsubo, Nobuyuki Furutani, and Saburo Endo,
1998 , “Preparation of CuInSe 2 Thin Films on Mo-Coated Glass
Substrates by Pulse-Plated Electrodeposition”, Jpn. J. Appl. Phys.,Vol. 37
pp. 3232-3237.
[39] Yen-Pei Fu, Rui-Wei You, and Kar Kit Lew, 2009, “CuIn 1−x Ga x Se 2
Absorber Layer Fabricated by Pulse-Reverse Electrodeposition Technique
for Thin Films Solar Cell”, Journal of The Electrochemical Society, 156
(12) pp.553- 557 .
[40] F.A. Lowenheim, 1978, Electroplating, McGraw-Hill, Inc.
[41] 熊楚強,王月,1997,電化學,文京出版社
[42] 楊聰仁,1984,“無電鍍之介紹”,逢甲大學材料科技,第 3 期,第 9~19
頁,四月
[43] 尤光先編譯,1997,電鍍工程學,財團法人徐氏基金會,
[44] Naglaa Fathy, R.K., Masaya Ichimur, 2004, “Preparation of
ZnS thin films by the pulsed electrochemical deposition. ”, Materials
Science and Engineering B, 107: pp. 271-276.
[45] S-C Kou & A. Hung, 2000, “Studies of Acid Sulfate Copper Pulse
Reversal Current Electrodeposition”, Plating & Surface Finishing,
pp.140-144
[46] K. M. Yin , 1996, “Duplex diffusion layer model for pulse with
reverse plating”, Surface & Coatings Technology, pp.162-164,
[47] 李輝煌著,2000,田口方法-品質設計的原理與實務,高立圖書有限公
司.
[48] 許健興,2004, 波形參數對通孔鍍銅之影響, 逢甲大學 材料與製
造工程化學工程組碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top