|
1.L. L. Zhang, and X. S. Zhao, “Carbon-based materials as supercapacitor electrodes”, Chem. Soc. Rev., 38 (2009) 2520-2531. 2.L. Zhang, and G. Q.Shi, “Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability”, J. Phys.Chem. C, vol. 115, no. 34, (2011) 17206-17212. 3.Y. Chen, Z. Zhang, P. Yu, and Y. Ma, “Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors”,J. Power Sources, vol. 195, no. 9, (2010) 3031-3035. 4.R. Kötz, and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45 (2000) 2483-2498. 5.R. G. Reddy, and R. N. Reddy, “Sol-gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124 (2003) 330-337. 6.L. Feng, Y. Zhu, H. Ding, and C. Ni, “Recent progress in nickel based materials for high performance pseudocapacitor electrodes”, J. Power Sources, 267 (2014) 430-444. 7.Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review”, Int. J. Hydrogen Energy, 34 (2009) 4889-4899. 8.M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, “Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review”, Nanoscale, 5 (2013) 72-88. 9.M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, “Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using activated carbon electrodes”, J. Electrochem. Soc., 148(8) (2001) A910-A914. 10.J. Huang, B. G. Sumpter, and V. Meunier, “A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes”, Chem. Eur. J., 14 (2008) 6614-6626. 11.J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured electrodes for high -performance pseudocapacitors”, Angew. Chem. Int. Ed., 52 (2013) 1882-1889. 12.T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Next generation pseudocapacitor materials from sol–gel derived transition metal oxides”, J. Sol-Gel Sci. Technol., 57 (2011) 330-335. 13.N. Wu, M. Zhi, C. Xiang, J. Li, and M. Li, “Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review”, Nanoscale, 5 (2013) 72-88. 14.V. Augustyn, P. Simon, and B. Dunn, “Pseudocapacitive oxide materials for high-rate electrochemical energy storage”, Energy Environ. Sci., 7 (2014) 1597-1614. 15.Ö. Sahin, and C. Saka, ”Preparation and characterization of activated carbon from a corn shell by physical activation with H2O-CO2 in Two-Step Pretreatment”, Bioresour. Technol., 136 (2013) 163-168. 16.F. Caturla, M. Molina-Sabio,and F. Rodríguez-Reinoso, “Preparation of activated carbon by chemical activation with ZnCl2”, Carbon, vol. 29. no. 7 (1991) 999-1007. 17.E. Frackowiak, and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39 (2001) 937-950. 18.E. R. Piñero, F. Leroux, and F. Béguin, “A high performance carbon for supercapacitors obtained by carbonization of a seaweed”, Adv. Mater., 18 (2006) 1877-1882. 19.R. Nandhini, P. A. Mini, B. Avinash, S. V. Nair, and K. R. V. Subramanian, “Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling”, Mater. Lett., 87 (2012) 165-168. 20.X. Li, C. Han, X. Chen, and C. Shi, “Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes”, Microporous Mesoporous Mater., 131 (2010) 303-309. 21.Y. Show, and K. Imaizumi, “Decrease in equivalent series resistance of electric double-layer capacitor by addition of carbon nanotube into the activated carbon electrode”,Diam. Relat. Mater., 15 (2006) 2086-2089. 22.S. Zhang, Y. Li, and N. Pan, “Graphene based supercapacitor fabricated by vacuum filtration deposition”, J. Power Sources, 206 (2012) 476-482. 23.Y. Jiang, D. Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, and Y. Chu, “A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors”, Electrochimi. Acta, 91 (2013) 173-178. 24.S. Faraji, and F. N. Ani, “Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors: a review”, J. Power Sources, 263 (2014) 338-360. 25.S. Yan, H. Wang, P. Qu, Y. Zhang, and Z. Xiao, “RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor”, Synth. Met., 159 (2009) 158-161. 26.W. Zhang, Z. Yang, F. Xu, Z. Mei, B. Pei, and X. Zhu, “Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application”, J. Power Sources, 246 (2014) 24-31. 27.X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, and L. Liang, “Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor applications”, J. Alloys Compd., 593 (2014) 184-189. 28.X. Li, Z. Wang, Y. Qiu, Q. Pan, and P. Hu, “3D graphene/ZnO nanorods composite networks as supercapacitor electrodes”, J. Alloys Compd., 620 (2015) 31-37. 29.來源網址:http://www.eetop.cn/blog/html/64/n-47864.html 30.M. Selvakumar, D. K. Bhat, A. Manish Aggarwal, S. PrahladhIyer, G. Sravani, “Nano ZnO-activated carbon composite electrodes for supercapacitors”, Physica B, 405 (2010) 2286-2289. 31.S. Devaraj and N. Munichandraiah, “Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties”, J. Phys. Chem., 112 (2008) 4406-4417 32.X. Dai, W. Shi, H. Cai, R. Li, and G. Yang, “Facile preparation of the novel structured α-MnO2/Graphene nanocomposites and their electrochemical properties”, Solid State Sci., 27 (2014) 17-23. 33.V. H. Nguyen, and J. J. Shim, “The 3DCo3O4/graphene/nickel foam electrode with enhanced electrochemical performance for supercapacitors”, Mater. Lett., 139 (2015) 377-381. 34.Y. Hu, J. Wang, X. Jiang, Y. Zheng, and Z. Chen, “Facile chemical synthesis of nanoporous layered δ-MnO2 thin film for high-performance flexible electrochemical capacitors”, Appl. Surf. Sci., 271 (2013) 193-201. 35.V. H. Nguyen, and J. J. Shim, “Three-dimensional nickel foam/graphene/NiCo2O4 as high performance electrodes for supercapacitors”, J. Power Sources, 273 (2015) 110-117. 36.M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, and J. An, “Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation”, Electrochimi. Acta, 151 (2015) 99-108. 37.Z. Lu, Z. Chang, W. Zhu, and X. Sun, “Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance”, Chem. Commun., 47 (2011) 9651-9653. 38.Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen, and S. Y. Guo, “Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material”, Electrochimi. Acta, 56 (2011) 2627-2632. 39.G. W. Yang, C. L. Xu, and H. L. Li, “Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance”, Chem. Commun., (2008) 6537-6539. 40.Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, and E. Xie, “Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes”, ACS. Nano, vol. 7, no. 1 (2013) 174-182. 41.A. Bello, O. O. Fashedemi, M. Fabiane, J. N. Lekitima, K. I. Ozoemena, and N. Manyala, “Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor”, Electrochim. Acta, 114 (2013) 48-53. 42.謝淵清,電化學反應程序,1983 年 5 月。 43.F. Gobal, and M. Faraji, “Electrodeposited polyaniline on pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor”, J. Electroanal. Chem., 691 (2013) 51-56. 44.M. Toupin, T. Brousse, and D. Belanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor”, Chem. Mater., 16 (2004) 3184-3190. 45.D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets”, Nature Nanotech., 3 (2008) 101-105. 46.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett., 97 (2006) 187401 47.Y. Jin, S. Huang, M. Zhang, M. Jia, and D. Hu, “A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent”, Appl. Surf. Sci., 268 (2013) 541-546. 48.J. Ge, H. B. Yao, W. Hu, X. F. Yu, Y. X. Yan, L. B. Mao, H. H. Li, S. S. Li, and S. H. Yu, “Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes”, Nano Energy, 2 (2013) 505-513. 49.J. G. Wang, Y. Yang, Z. H. Huang, and F. Kang, ”Shape controlled synthesis of hierarchical hollow urchin-shape α-MnO2 nanostructures and their electrochemical properties”, Mater. Chem. Phys., 140 (2013) 643-650. 50.X. Zhang, X. Sun, H. Zhang, D. Zhang, and Y. Ma, ”Microwave assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors”, Electrochim. Acta, 87 (2013) 637-644. 51.D. Yan, P. Yan, S. Cheng, J. Chen, R. Zhuo, J. Feng, and G. Zhang, “Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method”, Cryst. Growth Des., vol. 9, no. 1 (2009) 218-222. 52.Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, and Y. Xu, “Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors”, J. Power Sources, 279 (2015) 138-145. 53.F. Huang, Z. Lin, and J. Zhang, “Progress of nanocrystalline growth kinetics based on oriented attachment”, Nanoscale, 2 (2010) 18-34. 54.C. T. Campbell, S. C. Parker, and D. E. Starr, “The effect of size-dependent nanoparticle energetics on catalyst sintering”, Sci. 298 (2002) 811-814. 55.X. Wang, X. Zhang, B. Li, X. Li, Q. Chu, M. Yang, H. Chen, L. Peng, and X. Liu, “Morphology-controlled synthesis and growth mechanisms of branched α-MnO2 nanorods via facile microve-assisted hydrothermal method”, J. Mater. Sci. - Mater. Electron., 25 (2014) 906-913. 56.Z. Lin, Y. Liu, Y. Yao, O. J. Hildreth, Z. Li, K. Moon, and C. P. Wong, “Superior capacitance of functionalized graphene”, J. Phys. Chem. C, 115 (2011) 7120-7125. 57.F. Tu, S. Liu, T. Wu, G. Jin, and C. Pan, “Porous graphene as cathode material for lithium ion capacitor with high electrochemical performance”, Powder Technol., 253 (2014) 580-583. 58.W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, “High-performance nanostructured supercapacitors on a sponge” , Nano Lett., 11 (2011) 5165-5172. 59.M. Xu, L. Kong, W. Zhou, and H. Li, ”Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins”, J. Phys. Chem. C, 111 (2007) 19141-19147. 60.Y. Ma, P. Yu, X. Zhang, Y. Chen, and Z. Qi, “Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method”, Mater. Chem. Phys., 118 (2009) 303-307. 61.J. Li, J. Liu, and J. Essner, “Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays”, Chem. Mater., 22 (2010) 5022-5030. 62.H. Wang, C. Peng, F. Peng, H. Yu, and J. Yang, ”Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors”, Mater. Sci. Eng. B, 176 (2011) 1073-1078. 63.J. Chen, Z. Fan, M. Wang, K. Cui, H. Zhou, and Y. Kuang, ”Preparation and characterization of manganese oxide/CNT oomposites as supercapacitive materials”, Diamond Relat. Mater., 15 (2006) 1478-1483. 64.C. C. Hu, and C. C. Wang, “Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition”, J. Electrochem. Soc., 150(8) (2003) A1079-A1084. 65.Y. Zhang, Q. Q. Yao, H. L. Gao, L. X. Wang , L. Z. Wang, A. Q. Zhang,Y. H. Song, and T. C. Xia, “Synthesis and electrochemical properties of hollow-porous MnO2-graphene micro-nano spheres for supercapacitor applications”, Powder Technol., 267 (2014) 268-272. 66.G. Zhang, L. Ren, L. Deng, J. Wang, L. Kang, and Z. H. Liu, “Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor”, Mater. Res. Bull., 49 (2014) 577-583. 67.J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, and F. Wei, “Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes”, Carbon,48 (2010) 3825-3833. 68.J. Liu, Y. Zhang, Y. Li, J. Li, Z. Chen, H. Feng, J. Li, J. Jiang, and D. Qian, “In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior”, Electrochimi. Acta, 173 (2015) 148-155. 69.M. Pang, G. Long, S. Jiang, Y. Ji, W. Han, B. Wang, X. Liu, and Y. Xi, “Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor”, Mater. Sci. Eng. B, 194 (2015) 41-47.
|