跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張立瑋
研究生(外文):Li-Wei Chang
論文名稱:以水熱法及濕式化學法合成二氧化錳奈米薄片/石墨烯之鎳網電極及其超級電容之特性
論文名稱(外文):Supercapacitor properties of MnO2 nanoflakes on nickel foam-graphene by hydrothermal and chemical wet methods
指導教授:曾文甲
口試委員:廖健能陳智
口試日期:2015-07-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:63
中文關鍵詞:石墨烯二氧化錳無接合劑超級電容
外文關鍵詞:graphenemno2free bindersupercapacitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以兩階段合成法製備二氧化錳/石墨烯之複合材料電極(NGM),並探討其超級電容特性。第一階段先藉由濕式化學法製備石墨烯電極(NG),第二階段再利用水熱法將二氧化錳奈米薄片合成在石墨烯電極上,另外以水熱法合成二氧化錳電極(NM)作為對比實驗組。此外,藉由改變KMnO4濃度及水熱合成時間,我們仔細觀察合成之產物在實驗過程中形貌的演變並探討其成長機制,並根據循環伏安曲線,我們可以得到最佳超級電容特性之合成產物參數。其中,二氧化錳電極以及複合材料電極之最佳比電容值分別為334.12 F/g及726.67 F/g ,倍率性能則為48.51%及51.58%。經過1000次的循環穩定度測試後,二氧化錳電極以及複合材料電極之倍率性能分別為71.9%及82.1%。很明顯的,複合材料電極可以同時結合二氧化錳及石墨烯之合成效益,表現出良好的超級電容特性。

MnO2 nanoflakes/graphene were synthesized by hydrothermal and chemical wet methods. At first, graphene was synthesized on the nickel foam by chemical wet method. Then, MnO2 nanoflakes were synthesized on the graphene foam by hydrothermal process for comparison purpose. In comparison, MnO2 nanflakes were synthesis on the nickel foam by hydrothermal process. The samples were denoted as NG, NGM and NM, respectively. We changed the precursor concentration and synthesis time in the hydrothermal process to obtain NM and NGM to achieve the best capacitance performance. The specific capacitance of NM and NGM was to be 334.12 F/g and 726.67 F/g, respectively. The rate capability was 48.51% and 51.58%, respectively. After 1000 cycling tests, the specific capacitance retention was to showed 71.9% and 82.1% for NM and NGM, respectively. The NGM showed high specific capacitance and excellent cycle stability.

目次

摘要………………...…………………………………………………………………..i
Abstract………………………………….…………………………………………….ii
目次……………………………………………………………………………………iii
圖目次……………………………..………………………………………………….iv
表目次…………………………………...………………………………………..….vii

第一章 緒論……………………………………….……………………………….…1
第二章 文獻回顧………………………………………….……………………….…2
2.1. 超級電容…………………………………………….…………...……..2
2.1.1. 電雙層電容.…………………….……………...………….….....5
2.1.2. 擬電容.…………………...…….………………………….….....9
2.2. 電雙層電容之電極材料………………………...……….……………11
2.3. 擬電容之電極材料……………………………………………..…….16
2.4. 無接合劑添加之製程………………….…………………………...…22
2.5. 研究動機與目的…………………………………......……………..…25
第三章 實驗方法與步驟…………………………………………...…………….…26
3.1. 實驗流程……………………………...……………………………….26
3.2. 合成方法………………….……………………………...……………27
3.2.1. 石墨烯電極(NG)之製備.……..………………………….…....27
3.2.2. 二氧化錳電極(NM)之製備……………………………………27
3.2.3. 複合材料電極(NGM)之製備………………………………….28
3.3. 材料特性分析……………………..……………………………...…...28
3.4. 超級電容電極元件………………………………….……………...…28
第四章 結果與討論……………………….…………………………………..…….30
4.1. 石墨烯電極(NG)之製備……………………………………......…….30
4.2. 二氧化錳電極(NM)及複合材料電極(NGM)之製備………………...35
4.2.1. 不同前驅物濃度對二氧化錳電極(NM) 及複合材料電極(NGM)之影響…….…………………………………………………………...35
4.2.2. 二氧化錳電極(NM)及複合材料電極(NGM)之成長機制……40
4.3. 超級電容特性測試………....................................................................44
第五章 結論................................................................................................................57
參考文獻……………………………………………………………………………..58


1.L. L. Zhang, and X. S. Zhao, “Carbon-based materials as supercapacitor electrodes”, Chem. Soc. Rev., 38 (2009) 2520-2531.
2.L. Zhang, and G. Q.Shi, “Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability”, J. Phys.Chem. C, vol. 115, no. 34, (2011) 17206-17212.
3.Y. Chen, Z. Zhang, P. Yu, and Y. Ma, “Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors”,J. Power Sources, vol. 195, no. 9, (2010) 3031-3035.
4.R. Kötz, and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45 (2000) 2483-2498.
5.R. G. Reddy, and R. N. Reddy, “Sol-gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124 (2003) 330-337.
6.L. Feng, Y. Zhu, H. Ding, and C. Ni, “Recent progress in nickel based materials for high performance pseudocapacitor electrodes”, J. Power Sources, 267 (2014) 430-444.
7.Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review”, Int. J. Hydrogen Energy, 34 (2009) 4889-4899.
8.M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, “Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review”, Nanoscale, 5 (2013) 72-88.
9.M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara, and M. S. Dresselhaus, “Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using activated carbon electrodes”, J. Electrochem. Soc., 148(8) (2001) A910-A914.
10.J. Huang, B. G. Sumpter, and V. Meunier, “A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes”, Chem. Eur. J., 14 (2008) 6614-6626.
11.J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured electrodes for high -performance pseudocapacitors”, Angew. Chem. Int. Ed., 52 (2013) 1882-1889.
12.T. Brezesinski, J. Wang, S. H. Tolbert, and B. Dunn, “Next generation pseudocapacitor materials from sol–gel derived transition metal oxides”, J. Sol-Gel Sci. Technol., 57 (2011) 330-335.
13.N. Wu, M. Zhi, C. Xiang, J. Li, and M. Li, “Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review”, Nanoscale, 5 (2013) 72-88.
14.V. Augustyn, P. Simon, and B. Dunn, “Pseudocapacitive oxide materials for high-rate electrochemical energy storage”, Energy Environ. Sci., 7 (2014) 1597-1614.
15.Ö. Sahin, and C. Saka, ”Preparation and characterization of activated carbon from a corn shell by physical activation with H2O-CO2 in Two-Step Pretreatment”, Bioresour. Technol., 136 (2013) 163-168.
16.F. Caturla, M. Molina-Sabio,and F. Rodríguez-Reinoso, “Preparation of activated carbon by chemical activation with ZnCl2”, Carbon, vol. 29. no. 7 (1991) 999-1007.
17.E. Frackowiak, and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39 (2001) 937-950.
18.E. R. Piñero, F. Leroux, and F. Béguin, “A high performance carbon for supercapacitors obtained by carbonization of a seaweed”, Adv. Mater., 18 (2006) 1877-1882.
19.R. Nandhini, P. A. Mini, B. Avinash, S. V. Nair, and K. R. V. Subramanian, “Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling”, Mater. Lett., 87 (2012) 165-168.
20.X. Li, C. Han, X. Chen, and C. Shi, “Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes”, Microporous Mesoporous Mater., 131 (2010) 303-309.
21.Y. Show, and K. Imaizumi, “Decrease in equivalent series resistance of electric double-layer capacitor by addition of carbon nanotube into the activated carbon electrode”,Diam. Relat. Mater., 15 (2006) 2086-2089.
22.S. Zhang, Y. Li, and N. Pan, “Graphene based supercapacitor fabricated by vacuum filtration deposition”, J. Power Sources, 206 (2012) 476-482.
23.Y. Jiang, D. Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, and Y. Chu, “A facile hydrothermal synthesis of graphene porous NiO nanocomposite and its application in electrochemical capacitors”, Electrochimi. Acta, 91 (2013) 173-178.
24.S. Faraji, and F. N. Ani, “Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors: a review”, J. Power Sources, 263 (2014) 338-360.
25.S. Yan, H. Wang, P. Qu, Y. Zhang, and Z. Xiao, “RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor”, Synth. Met., 159 (2009) 158-161.
26.W. Zhang, Z. Yang, F. Xu, Z. Mei, B. Pei, and X. Zhu, “Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application”, J. Power Sources, 246 (2014) 24-31.
27.X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, and L. Liang, “Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor applications”, J. Alloys Compd., 593 (2014) 184-189.
28.X. Li, Z. Wang, Y. Qiu, Q. Pan, and P. Hu, “3D graphene/ZnO nanorods composite networks as supercapacitor electrodes”, J. Alloys Compd., 620 (2015) 31-37.
29.來源網址:http://www.eetop.cn/blog/html/64/n-47864.html
30.M. Selvakumar, D. K. Bhat, A. Manish Aggarwal, S. PrahladhIyer, G. Sravani, “Nano ZnO-activated carbon composite electrodes for supercapacitors”, Physica B, 405 (2010) 2286-2289.
31.S. Devaraj and N. Munichandraiah, “Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties”, J. Phys. Chem., 112 (2008) 4406-4417
32.X. Dai, W. Shi, H. Cai, R. Li, and G. Yang, “Facile preparation of the novel structured α-MnO2/Graphene nanocomposites and their electrochemical properties”, Solid State Sci., 27 (2014) 17-23.
33.V. H. Nguyen, and J. J. Shim, “The 3DCo3O4/graphene/nickel foam electrode with enhanced electrochemical performance for supercapacitors”, Mater. Lett., 139 (2015) 377-381.
34.Y. Hu, J. Wang, X. Jiang, Y. Zheng, and Z. Chen, “Facile chemical synthesis of nanoporous layered δ-MnO2 thin film for high-performance flexible electrochemical capacitors”, Appl. Surf. Sci., 271 (2013) 193-201.
35.V. H. Nguyen, and J. J. Shim, “Three-dimensional nickel foam/graphene/NiCo2O4 as high performance electrodes for supercapacitors”, J. Power Sources, 273 (2015) 110-117.
36.M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, and J. An, “Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation”, Electrochimi. Acta, 151 (2015) 99-108.
37.Z. Lu, Z. Chang, W. Zhu, and X. Sun, “Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance”, Chem. Commun., 47 (2011) 9651-9653.
38.Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen, and S. Y. Guo, “Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material”, Electrochimi. Acta, 56 (2011) 2627-2632.
39.G. W. Yang, C. L. Xu, and H. L. Li, “Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance”, Chem. Commun., (2008) 6537-6539.
40.Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, and E. Xie, “Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes”, ACS. Nano, vol. 7, no. 1 (2013) 174-182.
41.A. Bello, O. O. Fashedemi, M. Fabiane, J. N. Lekitima, K. I. Ozoemena, and N. Manyala, “Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor”, Electrochim. Acta, 114 (2013) 48-53.
42.謝淵清,電化學反應程序,1983 年 5 月。
43.F. Gobal, and M. Faraji, “Electrodeposited polyaniline on pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor”, J. Electroanal. Chem., 691 (2013) 51-56.
44.M. Toupin, T. Brousse, and D. Belanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor”, Chem. Mater., 16 (2004) 3184-3190.
45.D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets”, Nature Nanotech., 3 (2008) 101-105.
46.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett., 97 (2006) 187401
47.Y. Jin, S. Huang, M. Zhang, M. Jia, and D. Hu, “A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent”, Appl. Surf. Sci., 268 (2013) 541-546.
48.J. Ge, H. B. Yao, W. Hu, X. F. Yu, Y. X. Yan, L. B. Mao, H. H. Li, S. S. Li, and S. H. Yu, “Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes”, Nano Energy, 2 (2013) 505-513.
49.J. G. Wang, Y. Yang, Z. H. Huang, and F. Kang, ”Shape controlled synthesis of hierarchical hollow urchin-shape α-MnO2 nanostructures and their electrochemical properties”, Mater. Chem. Phys., 140 (2013) 643-650.
50.X. Zhang, X. Sun, H. Zhang, D. Zhang, and Y. Ma, ”Microwave assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors”, Electrochim. Acta, 87 (2013) 637-644.
51.D. Yan, P. Yan, S. Cheng, J. Chen, R. Zhuo, J. Feng, and G. Zhang, “Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method”, Cryst. Growth Des., vol. 9, no. 1 (2009) 218-222.
52.Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, and Y. Xu, “Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors”, J. Power Sources, 279 (2015) 138-145.
53.F. Huang, Z. Lin, and J. Zhang, “Progress of nanocrystalline growth kinetics based on oriented attachment”, Nanoscale, 2 (2010) 18-34.
54.C. T. Campbell, S. C. Parker, and D. E. Starr, “The effect of size-dependent nanoparticle energetics on catalyst sintering”, Sci. 298 (2002) 811-814.
55.X. Wang, X. Zhang, B. Li, X. Li, Q. Chu, M. Yang, H. Chen, L. Peng, and X. Liu, “Morphology-controlled synthesis and growth mechanisms of branched α-MnO2 nanorods via facile microve-assisted hydrothermal method”, J. Mater. Sci. - Mater. Electron., 25 (2014) 906-913.
56.Z. Lin, Y. Liu, Y. Yao, O. J. Hildreth, Z. Li, K. Moon, and C. P. Wong, “Superior capacitance of functionalized graphene”, J. Phys. Chem. C, 115 (2011) 7120-7125.
57.F. Tu, S. Liu, T. Wu, G. Jin, and C. Pan, “Porous graphene as cathode material for lithium ion capacitor with high electrochemical performance”, Powder Technol., 253 (2014) 580-583.
58.W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, “High-performance nanostructured supercapacitors on a sponge” , Nano Lett., 11 (2011) 5165-5172.
59.M. Xu, L. Kong, W. Zhou, and H. Li, ”Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins”, J. Phys. Chem. C, 111 (2007) 19141-19147.
60.Y. Ma, P. Yu, X. Zhang, Y. Chen, and Z. Qi, “Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method”, Mater. Chem. Phys., 118 (2009) 303-307.
61.J. Li, J. Liu, and J. Essner, “Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays”, Chem. Mater., 22 (2010) 5022-5030.
62.H. Wang, C. Peng, F. Peng, H. Yu, and J. Yang, ”Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors”, Mater. Sci. Eng. B, 176 (2011) 1073-1078.
63.J. Chen, Z. Fan, M. Wang, K. Cui, H. Zhou, and Y. Kuang, ”Preparation and characterization of manganese oxide/CNT oomposites as supercapacitive materials”, Diamond Relat. Mater., 15 (2006) 1478-1483.
64.C. C. Hu, and C. C. Wang, “Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition”, J. Electrochem. Soc., 150(8) (2003) A1079-A1084.
65.Y. Zhang, Q. Q. Yao, H. L. Gao, L. X. Wang , L. Z. Wang, A. Q. Zhang,Y. H. Song, and T. C. Xia, “Synthesis and electrochemical properties of hollow-porous MnO2-graphene micro-nano spheres for supercapacitor applications”, Powder Technol., 267 (2014) 268-272.
66.G. Zhang, L. Ren, L. Deng, J. Wang, L. Kang, and Z. H. Liu, “Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor”, Mater. Res. Bull., 49 (2014) 577-583.
67.J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, and F. Wei, “Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes”, Carbon,48 (2010) 3825-3833.
68.J. Liu, Y. Zhang, Y. Li, J. Li, Z. Chen, H. Feng, J. Li, J. Jiang, and D. Qian, “In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior”, Electrochimi. Acta, 173 (2015) 148-155.
69.M. Pang, G. Long, S. Jiang, Y. Ji, W. Han, B. Wang, X. Liu, and Y. Xi, “Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor”, Mater. Sci. Eng. B, 194 (2015) 41-47.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊