|
1.F. T. Docherty, P. B. Monaghan, C. J. McHugh, D. Graham, W. E. Smith, and J. M. Cooper, Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy, IEEE Sensors Journal 5, 632-640 (2005). 2.Y. Jiang, D.-W. Sun, H. Pu, and Q. Wei, Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues, Trends in Food Science & Technology 75, 10-22 (2018). 3.Y. Zhang, Z. Wang, L. Wu, Y. Pei, P. Chen, and Y. Cui, Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique, Analyst 139, 5148-5154 (2014). 4.L. A. Lane, X. Qian, and S. Nie, SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging, Chem Rev 115, 10489-10529 (2015). 5.K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Physical review letters 78, 1667 (1997). 6.S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, Electromagnetic theories of surface-enhanced Raman spectroscopy, Chem Soc Rev 46, 4042-4076 (2017). 7.X. Wu, L. Luo, S. Yang, X. Ma, Y. Li, C. Dong, Y. Tian, L. Zhang, Z. Shen, and A. Wu, Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood, ACS Appl Mater Interfaces 7, 9965-9971 (2015). 8.A. Li, L. Tang, D. Song, S. Song, W. Ma, L. Xu, H. Kuang, X. Wu, L. Liu, X. Chen, and C. Xu, A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1, Nanoscale 8, 1873-1878 (2016). 9.Y. Liu, Z. Lu, X. Lin, H. Zhu, W. Hasi, M. Zhang, X. Zhao, and X. Lou, A reproducible gold SERS substrate assisted by silver nanoparticles without using extra aggregation agents, RSC Advances 6, 58387-58393 (2016). 10.W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, and X. Wang, Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering, Journal of Micromechanics and Microengineering 22, 125007 (2012). 11.K. Sivashanmugan, J.-D. Liao, J.-W. You, and C.-L. Wu, Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection, Sensors and Actuators B: Chemical 181, 361-367 (2013). 12.T.-J. Wang, K.-C. Hsu, Y.-C. Liu, C.-H. Lai, and H.-P. Chiang, Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter, Journal of Optics 18, 055006 (2016). 13.X. Zhao, J. Wen, M. Zhang, D. Wang, Y. Wang, L. Chen, Y. Zhang, J. Yang, and Y. Du, Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography, ACS Appl Mater Interfaces 9, 7710-7716 (2017). 14.C.-C. Liang, M.-Y. Liao, W.-Y. Chen, T.-C. Cheng, W.-H. Chang, and C.-H. Lin, Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles, Optics express 19, 4768-4776 (2011). 15.M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters 26, 163-166 (1974). 16.D. L. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, Journal of electroanalytical chemistry and interfacial electrochemistry 84, 1-20 (1977). 17.M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, The Journal of Chemical Physics 69, 4159-4161 (1978). 18.L. Jensen, C. M. Aikens, and G. C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering, Chem Soc Rev 37, 1061-1073 (2008). 19.J. F. Li, Y. J. Zhang, S. Y. Ding, R. Panneerselvam, and Z. Q. Tian, Core-Shell Nanoparticle-Enhanced Raman Spectroscopy, Chem Rev (2017). 20.Y. Li, J. Li, T. Wang, Z. Zhang, Y. Bai, C. Hao, C. Feng, Y. Ma, and R. Sun, Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates, Applied Surface Science 443, 138-144 (2018). 21.X. Liang, B. Liang, Z. Pan, X. Lang, Y. Zhang, G. Wang, P. Yin, and L. Guo, Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids, Nanoscale 7, 20188-20196 (2015). 22.Y. Fang, N.-H. Seong, and D. D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering, Science 321, 388-392 (2008). 23.N. Guillot and M. L. de la Chapelle, The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures, Journal of Quantitative Spectroscopy and Radiative Transfer 113, 2321-2333 (2012). 24.W.-L. Zhai, D.-W. Li, L.-L. Qu, J. S. Fossey, and Y.-T. Long, Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy, Nanoscale 4, 137-142 (2012). 25.C. Wang, J. Wang, M. Li, X. Qu, K. Zhang, Z. Rong, R. Xiao, and S. Wang, A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@ Ag nanoparticles, Analyst 141, 6226-6238 (2016). 26.Z. Li, K. Zhu, Q. Zhao, and A. Meng, The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification, Applied Surface Science 377, 23-29 (2016). 27.E. Jorgenson and A. Ianoul, Biofunctionalization of Plasmonic Nanoparticles with Short Peptides Monitored by SERS, The Journal of Physical Chemistry B 121, 967-974 (2017). 28.M. Schutz, D. Steinigeweg, M. Salehi, K. Kompe, and S. Schlucker, Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy, Chem Commun (Camb) 47, 4216-4218 (2011). 29.M. G. Caglayan, E. Kasap, D. Cetin, Z. Suludere, and U. Tamer, Fabrication of SERS active gold nanorods using benzalkonium chloride, and their application to an immunoassay for potato virus X, Microchimica Acta 184, 1059-1067 (2017). 30.Y. Yang, J. Liu, Z. W. Fu, and D. Qin, Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity, J Am Chem Soc 136, 8153-8156 (2014). 31.Y. Zhang, P. Yang, M. A. Habeeb Muhammed, S. K. Alsaiari, B. Moosa, A. Almalik, A. Kumar, E. Ringe, and N. M. Khashab, Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS, ACS Appl Mater Interfaces 9, 37597-37605 (2017). 32.J. Shen, Y. Zhu, X. Yang, J. Zong, and C. Li, Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling, Langmuir 29, 690-695 (2013). 33.L. Zhang, C. Guan, Y. Wang, and J. Liao, Highly effective and uniform SERS substrates fabricated by etching multi-layered gold nanoparticle arrays, Nanoscale 8, 5928-5937 (2016). 34.F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential, Chemical Physics Letters 446, 339-343 (2007). 35.N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy, Nano Lett 10, 4952-4955 (2010). 36.A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules, ACS nano 8, 7986-7994 (2014). 37.L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, Engineering Nanoparticle Cluster Arrays for Bacterial Biosensing: The Role of the Building Block in Multiscale SERS Substrates, Advanced Functional Materials 20, 2619-2628 (2010). 38.V. Liberman, C. Yilmaz, T. Bloomstein, S. Somu, Y. Echegoyen, A. Busnaina, S. Cann, K. Krohn, M. Marchant, and M. Rothschild, A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates, Advanced Materials 22, 4298-4302 (2010). 39.L. Feng, R. Ma, Y. Wang, D. Xu, D. Xiao, L. Liu, and N. Lu, Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering, Nano Research 8, 3715-3724 (2015). 40.X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, Ultrasensitive SERS performance in 3D sunflower-like nanoarrays decorated with Ag nanoparticles, Nanoscale 9, 3114-3120 (2017). 41.Z. Huang, G. Meng, Q. Huang, B. Chen, C. Zhu, and Z. Zhang, Large‐area Ag nanorod array substrates for SERS: AAO template‐assisted fabrication, functionalization, and application in detection PCBs, Journal of Raman Spectroscopy 44, 240-246 (2013). 42.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14, 4129-4133 (1996). 43.W. Zhou, G. Min, J. Zhang, Y. Liu, J. Wang, Y. Zhang, and F. Sun, Nanoimprint lithography: a processing technique for nanofabrication advancement, Nano-Micro Letters 3, 135-140 (2011). 44.C.-C. Liang, C.-H. Lin, T.-C. Cheng, J. Shieh, and H.-H. Lin, Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces, Advanced Materials Interfaces 2, 1500030 (2015). 45.C. Bencher, J. Y. Cheng, Y.-C. Ting, and S.-L. Shy, Nano-imprint lithography using poly (methyl methacrylate) (PMMA) and polystyrene (PS) polymers, 9777, 97771H (2016). 46.M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, Fabrication of nanostructures using a UV-based imprint technique, Microelectronic Engineering 53, 233-236 (2000). 47.J. Perumal, T. H. Yoon, H. S. Jang, J. J. Lee, and D. P. Kim, Adhesion force measurement between the stamp and the resin in ultraviolet nanoimprint lithography--an investigative approach, Nanotechnology 20, 055704 (2009). 48.Y. Xia and G. M. Whitesides, Soft lithography, Angewandte Chemie International Edition 37, 550-575 (1998). 49.T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Improved pattern transfer in soft lithography using composite stamps, Langmuir 18, 5314-5320 (2002). 50.H. Schmid and B. Michel, Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042-3049 (2000). 51.M. Rahlves, M. Rezem, K. Boroz, S. Schlangen, E. Reithmeier, and B. Roth, Flexible, fast, and low-cost production process for polymer based diffractive optics, Optics express 23, 3614-3622 (2015). 52.T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, Soft lithography using acryloxy perfluoropolyether composite stamps, Langmuir 23, 2898-2905 (2007). 53.W. Karim, S. A. Tschupp, M. Oezaslan, T. J. Schmidt, J. Gobrecht, J. A. van Bokhoven, and Y. Ekinci, High-resolution and large-area nanoparticle arrays using EUV interference lithography, Nanoscale 7, 7386-7393 (2015). 54.C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis, Microelectronic engineering 83, 1798-1804 (2006). 55.W.-Y. Chen and C.-H. Lin, A standing-wave interpretation of plasmon resonance excitation in split-ring resonators, Optics express 18, 14280-14292 (2010). 56.M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, and L. Montelius, Improving stamps for 10 nm level wafer scale nanoimprint lithography, Microelectronic Engineering 61, 441-448 (2002). 57.X. N. He, Y. Gao, M. Mahjouri-Samani, P. N. Black, J. Allen, M. Mitchell, W. Xiong, Y. S. Zhou, L. Jiang, and Y. F. Lu, Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes, Nanotechnology 23, 205702 (2012). 58.Z. Zhuang, X. Shi, Y. Chen, and M. Zuo, Surface-enhanced Raman scattering of trans-1,2-bis (4-pyridyl)-ethylene on silver by theory calculations, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 79, 1593-1599 (2011). 59.X.-F. Zhang, M.-Q. Zou, X.-H. Qi, F. Liu, X.-H. Zhu, and B.-H. Zhao, Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy, Journal of Raman Spectroscopy 41, 1655-1660 (2010).
|