跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉世謙
研究生(外文):Liu, Shih-Chien
論文名稱:氮化鎵高功率元件性能增強技術
論文名稱(外文):Performance Enhancement Technologies for GaN Power Devices
指導教授:張翼張翼引用關係
指導教授(外文):Chang, Yi
口試委員:張翼張立孫台平謝宗雍劉致為成維華
口試委員(外文):Chang, YiChang, LiSun, Tai-PingHsieh, Tsung-EongLiu, Chee-WeeChieng, Wei-Hua
口試日期:2017-01-23
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:氮化鎵鈍化層介面分析高功率元件
外文關鍵詞:GaNPassivationInterface analysisHigh Power Device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:560
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
氮化鎵高速電子遷移率電晶體之優秀高功率特性使得氮化鎵系列電晶體非常適合高功率元件應用,此外,氮化鎵與矽基板之整合技術更使其有可量產及低成本製造之優勢。本論文將著重於氮化鎵功率元件之性能增強技術開發,其包含表面處理技術、鈍化層內電荷之探討、及高臨界電壓增強型氮化鎵元件。首先我們在鈍化層沉積之前利用氮氣電漿處理得到高品質之介面於鈍化層及氮化鋁鎵之間,經過處理後的元件特性有明顯的提升。第二部份將探討鈍化層內電荷對元件之影響,由於氮化鎵高速電子遷移率電晶體之能帶工程結構,結果顯示出其鈍化層內電荷會有效的影響其二維電子氣之濃度。最後一部分是闡述利用電荷缺陷儲存結構搭配鐵電材料的複合閘極介電層達到高臨界電壓增強型之氮化鎵高速電子遷移率電晶體,元件表現出高臨界電壓5.2 V,其最大電流值為700 mA/mm。
GaN-based High Electron Mobility Transistors (HEMTs) have demonstrated outstanding high-power performance making them suitable for power switching applications. Besides, the integration of GaN HEMTs on Si substrate provides mass production and low cost fabrication. This thesis focuses on the developments of GaN power devices for enhancing device performance, consisting of surface treatment techniques, investigation of charge passivation, and high threshold voltage (Vth) enhancement mode (E-mode) GaN devices. First of all, the nitrogen plasma treatment (referred as N-passivation) prior to passivation layer deposition demonstrates a high quality interface between passivation layer and AlGaN layer. The device with N-passivation exhibited improvements in device performance. Second, the investigation of charge passivation proved that the charges in the passivation layer effectively affect the two-dimensional electron gas (2DEG) carrier density due to the bandgap engineering structure of GaN HEMTs. Finally, we demonstrated a high threshold voltage E-mode GaN MIS-HEMTs using charge trap dielectric stack with ferroelectric HfZrO2. The devices exhibit high Vth of 5.2 V with IDS,max of 700 mA/mm.
摘要 I
Abstract II
Contents V
Table Captions VI
Figure Captions VII
Chapter 1 Introduction 1
1.1 GaN Materials 1
1.2 Basics of AlGaN/GaN HEMTs 2
1.3 Next Generation GaN HEMT Power Device 4
1.4 Motivations and Thesis Contents 5
Chapter 2 GaN MIS-HEMTs With Nitrogen Passivation for Power Device Applications 14
2.1 Introduction 14
2.2 Experiment 15
2.3 Results and Discussion 16
2.4 Summary 21
Chapter 3 Effective Passivation with High-density Positive Fixed Charges for GaN MIS-HEMTs 29
3.1 Introduction 29
3.2 Experiment 31
3.3 Results and Discussion 32
3.4 Summary 35
Chapter 4 High Threshold Voltage E-mode GaN MIS-HEMT 44
4.1 Introduction 44
4.2 Experiment 45
4.3 Results and Discussion 45
4.4 Summary 48
Chapter 5 Conclusion 57
References 58
Curriculum Vitae 64
Publication List 65
Patent 65
[1] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, "GaN power transistors on Si substrates for switching applications," Proceedings of the IEEE, vol. 98, pp. 1151-1161, 2010.
[2] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness," Japanese Journal of Applied Physics, vol. 39, p. L1183, 2000.
[3] H. Ishikawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, "GaN on Si substrate with AlGaN/AlN intermediate layer," Japanese journal of applied physics, vol. 38, p. L492, 1999.
[4] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer," Journal of crystal growth, vol. 128, pp. 391-396, 1993.
[5] O. Ambacher, B. Foutz, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, A. Sierakowski, W. Schaff, and L. Eastman, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of applied physics, vol. 87, pp. 334-344, 2000.
[6] J. Ibbetson, P. Fini, K. Ness, S. DenBaars, J. Speck, and U. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors," Applied Physics Letters, vol. 77, pp. 250-252, 2000.
[7] M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, "GaN on Si technologies for power switching devices," IEEE Transactions on Electron Devices, vol. 60, pp. 3053-3059, 2013.
[8] T. Ueda, H. Handa, Y. Kinoshita, H. Umeda, S. Ujita, R. Kajitani, M. Ogawa, K. Tanaka, T. Morita, and S. Tamura, "GaN-based Gate Injection Transistors for power switching applications," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 11.3. 1-11.3. 4.
[9] M. H. Kwan, K.-Y. Wong, Y. Lin, F. Yao, M. Tsai, Y.-C. Chang, P. Chen, R. Su, C.-H. Wu, and J. Yu, "CMOS-compatible GaN-on-Si field-effect transistors for high voltage power applications," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 17.6. 1-17.6. 4.
[10] J. Würfl, O. Hilt, E. Bahat-Treidel, R. Zhytnytska, P. Kotara, F. Brunner, O. Krueger, and M. Weyers, "Techniques towards GaN power transistors with improved high voltage dynamic switching properties," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 6.1. 1-6.1. 4.
[11] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, "A study on current collapse in AlGaN/GaN HEMTs induced by bias stress," IEEE Transactions on Electron Devices, vol. 50, pp. 2015-2020, 2003.
[12] J. A. del Alamo and J. Joh, "GaN HEMT reliability," Microelectronics reliability, vol. 49, pp. 1200-1206, 2009.
[13] J. Joh and J. A. Del Alamo, "A current-transient methodology for trap analysis for GaN high electron mobility transistors," IEEE Transactions on Electron Devices, vol. 58, pp. 132-140, 2011.
[14] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, "Slow transients observed in AlGaN/GaN HFETs: effects of SiN x passivation and UV illumination," IEEE Transactions on Electron Devices, vol. 50, pp. 886-893, 2003.
[15] W. Johnson and E. L. Piner, "GaN HEMT technology," in GaN and ZnO-based Materials and Devices, ed: Springer, 2012, pp. 209-237.
[16] K.-Y. R. Wong, M.-H. Kwan, F.-W. Yao, M.-W. Tsai, Y.-S. Lin, Y.-C. Chang, P.-C. Chen, R.-Y. Su, J.-L. Yu, and F.-J. Yang, "A next generation CMOS-compatible GaN-on-Si transistors for high efficiency energy systems," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 9.5. 1-9.5. 4.
[17] M. Ganchenkova and R. M. Nieminen, "Nitrogen vacancies as major point defects in gallium nitride," Physical review letters, vol. 96, p. 196402, 2006.
[18] T. Hashizume and R. Nakasaki, "Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces," Applied physics letters, vol. 80, pp. 4564-4566, 2002.
[19] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, "Influence of surface defect charge at AlGaN-GaN-HEMT upon Schottky gate leakage current and breakdown voltage," IEEE Transactions on Electron Devices, vol. 52, pp. 159-164, 2005.
[20] W. Tan, M. Uren, P. Houston, R. Green, R. Balmer, and T. Martin, "Surface leakage currents in SiN x passivated AlGaN/GaN HFETs," IEEE electron device letters, vol. 27, pp. 1-3, 2006.
[21] H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, "Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation," IEEE Electron device letters, vol. 24, pp. 421-423, 2003.
[22] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, Y. Lu, S. Huang, and K. J. Chen, "Mapping of interface traps in high-performance Al 2 O 3/AlGaN/GaN MIS-heterostructures using frequency-and temperature-dependent CV techniques," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 6.3. 1-6.3. 4.
[23] A. P. Edwards, J. A. Mittereder, S. C. Binari, D. S. Katzer, D. F. Storm, and J. A. Roussos, "Improved reliability of AlGaN-GaN HEMTs using an NH 3 plasma treatment prior to SiN passivation," IEEE electron device letters, vol. 26, pp. 225-227, 2005.
[24] Y. Puzyrev, T. Roy, M. Beck, B. Tuttle, R. Schrimpf, D. Fleetwood, and S. Pantelides, "Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors," Journal of Applied Physics, vol. 109, p. 034501, 2011.
[25] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni, "Reliability of GaN high-electron-mobility transistors: state of the art and perspectives," IEEE Transactions on Device and Materials Reliability, vol. 8, pp. 332-343, 2008.
[26] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, vol. 48, pp. 560-566, 2001.
[27] H. Huang, Y. C. Liang, G. S. Samudra, T.-F. Chang, and C.-F. Huang, "Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs," IEEE Transactions on Power Electronics, vol. 29, pp. 2164-2173, 2014.
[28] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, S. Huang, and K. J. Chen, "High-Quality Interface in MIS Structures With In Situ Pre-Gate Plasma Nitridation," IEEE Electron Device Letters, vol. 34, pp. 1497-1499, 2013.
[29] S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, "Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film," IEEE Electron Device Letters, vol. 33, pp. 516-518, 2012.
[30] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, "GaN MIS-HEMTs with nitrogen passivation for power device applications," IEEE Electron Device Letters, vol. 35, pp. 1001-1003, 2014.
[31] H. Lüth, Solid surfaces, interfaces and thin films vol. 4: Springer, 2001.
[32] A. G. Aberle, "Overview on SiN surface passivation of crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 65, pp. 239-248, 2001.
[33] Z. Zhuo, Y. Sannomiya, Y. Kanetani, T. Yamada, H. Ohmi, H. Kakiuchi, and K. Yasutake, "Interface properties of SiOxNy layer on Si prepared by atmospheric-pressure plasma oxidation-nitridation," Nanoscale research letters, vol. 8, pp. 1-6, 2013.
[34] V. Nguyen, W. Lanford, and A. Rieger, "Variation of Hydrogen Bonding, Depth Profiles, and Spin Density in Plasma‐Deposited Silicon Nitride and Oxynitride Film with Deposition Mechanism," Journal of The Electrochemical Society, vol. 133, pp. 970-974, 1986.
[35] D. Jin and J. A. del Alamo, "Methodology for the study of dynamic ON-resistance in high-voltage GaN field-effect transistors," IEEE Transactions on Electron Devices, vol. 60, pp. 3190-3196, 2013.
[36] Z. Xu, W. Zhang, F. Xu, F. Wang, L. M. Tolbert, and B. J. Blalock, "Investigation of 600 V GaN HEMTs for high efficiency and high temperature applications," in Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, 2014, pp. 131-136.
[37] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation," IEEE Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007.
[38] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode," IEEE transactions on electron devices, vol. 53, pp. 2207-2215, 2006.
[39] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, "Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-gate dielectrics," IEEE Electron Device Letters, vol. 31, pp. 189-191, 2010.
[40] W. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage," Electronics Letters, vol. 41, pp. 449-450, 2005.
[41] Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen, and B. Zhang, "7.6 V Threshold Voltage High-Performance Normally-Off Al 2 O 3/GaN MOSFET Achieved by Interface Charge Engineering," IEEE Electron Device Letters, vol. 37, pp. 165-168, 2016.
[42] J.-H. Lee, C. Park, K.-W. Kim, D.-S. Kim, and J.-H. Lee, "Performance of Fully Recessed AlGaN/GaN MOSFET Prepared on GaN Buffer Layer Grown With AlSiC Precoverage on Silicon Substrate," IEEE Electron Device Letters, vol. 34, pp. 975-977, 2013.
[43] Y.-H. Wang, Y. C. Liang, G. S. Samudra, H. Huang, B.-J. Huang, S.-H. Huang, T.-F. Chang, C.-F. Huang, W.-H. Kuo, and G.-Q. Lo, "6.5 V High Threshold Voltage AlGaN/GaN Power Metal-Insulator-Semiconductor High Electron Mobility Transistor Using Multilayer Fluorinated Gate Stack," IEEE Electron Device Letters, vol. 36, pp. 381-383, 2015.
[44] J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, "Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 9.4. 1-9.4. 4.
[45] Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, "600-V Normally Off/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse," IEEE Electron Device Letters, vol. 34, pp. 1373-1375, 2013.
[46] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. Do Kim, and C. S. Hwang, "Grain size engineering for ferroelectric Hf0. 5Zr0. 5O2 films by an insertion of Al2O3 interlayer," Applied Physics Letters, vol. 105, p. 192903, 2014.
[47] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, "Evolution of phases and ferroelectric properties of thin Hf0. 5Zr0. 5O2 films according to the thickness and annealing temperature," Applied Physics Letters, vol. 102, p. 242905, 2013.
[48] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, H. K. Kim, and C. S. Hwang, "Effect of forming gas annealing on the ferroelectric properties of Hf0. 5Zr0. 5O2 thin films with and without Pt electrodes," Applied Physics Letters, vol. 102, p. 112914, 2013.
[49] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, and C. S. Hwang, "The effects of crystallographic orientation and strain of thin Hf0. 5Zr0. 5O2 film on its ferroelectricity," Applied Physics Letters, vol. 104, p. 072901, 2014.
[50] Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, M.-H. Lee, H.-H. Hsu, and S.-S. Yen, "Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust 85° C-extrapolated 10 16 endurance," in VLSI Technology (VLSI Technology), 2015 Symposium on, 2015, pp. T184-T185.
[51] Y. Seo, H.-M. An, M. Y. Song, and T. G. Kim, "Charge trap flash memory using ferroelectric materials as a blocking layer," Applied Physics Letters, vol. 100, p. 173507, 2012.
[52] J. H. Park, C. W. Byun, K. H. Seok, H. Y. Kim, H. J. Chae, S. K. Lee, S. W. Son, D. Ahn, and S. K. Joo, "A hybrid ferroelectric-flash memory cells," Journal of Applied Physics, vol. 116, p. 124512, 2014.
[53] S. R. Rajwade, K. Auluck, J. B. Phelps, K. G. Lyon, J. T. Shaw, and E. C. Kan, "A ferroelectric and charge hybrid nonvolatile memory—Part I: Device concept and modeling," IEEE Transactions on Electron Devices, vol. 59, pp. 441-449, 2012.
[54] S. R. Rajwade, K. Auluck, J. B. Phelps, K. G. Lyon, J. T. Shaw, and E. C. Kan, "A ferroelectric and charge hybrid nonvolatile memory—Part II: experimental validation and analysis," IEEE Transactions on Electron Devices, vol. 59, pp. 450-458, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於高功率電子之高電子遷移率氮化鎵電晶體其設計、模擬與開發 之研究
2. 氮化鋁鎵/氮化鎵高電子遷移率元件製作與特性研究
3. 氮化鋁鎵/氮化鎵射頻功率金氧半高電子遷移率電晶體 之元件製作與特性探討
4. 於高頻高功率應用的氮化鋁鎵/氮化鎵高電子遷移率電晶體大訊號模型建立
5. 高電流與低動態電阻RON增強型氮化鎵MIS-HEMT
6. 以氧化鑭/二氧化矽堆疊式氧化層作為高功率增強型氮化鎵金屬-絕緣體-半導體高電子遷移率電晶體的閘極介電層之研究
7. 利用中性粒子束蝕刻製作掘入式閘極增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體於高頻高功率上的應用
8. 應用於後互補式金屬氧化物半導體之低功率高介電係數/三五族金屬氧化物半導體元件閘極金屬堆疊之研究
9. 藉由步進式偏壓量測評估高功率氮化鎵金屬絕緣層半導體高電子遷移率電晶體之穩定性研究
10. 以二氧化矽作為高電流密度氮化鎵高電子遷移率電晶體之閘極氧化層之研究
11. 無線多導極心電圖系統動作假影雜訊抑制 之使用混合式適應性濾波器
12. 利用腔內繞射耗損探討被動式Q開關 Nd:YAG脈衝雷射的消尾現象
13. 計程車空車巡行路徑推估方法之研究
14. 高功率電子應用之氮化鎵半導體於矽基板的元件製作與特性研究
15. EGFR-TKI小分子標靶藥物治療非小細胞肺癌之細胞反應與藥物交互作用