|
[1] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, and S. Yoshida, "GaN power transistors on Si substrates for switching applications," Proceedings of the IEEE, vol. 98, pp. 1151-1161, 2010. [2] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 µm in thickness," Japanese Journal of Applied Physics, vol. 39, p. L1183, 2000. [3] H. Ishikawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, "GaN on Si substrate with AlGaN/AlN intermediate layer," Japanese journal of applied physics, vol. 38, p. L492, 1999. [4] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer," Journal of crystal growth, vol. 128, pp. 391-396, 1993. [5] O. Ambacher, B. Foutz, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, A. Sierakowski, W. Schaff, and L. Eastman, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of applied physics, vol. 87, pp. 334-344, 2000. [6] J. Ibbetson, P. Fini, K. Ness, S. DenBaars, J. Speck, and U. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors," Applied Physics Letters, vol. 77, pp. 250-252, 2000. [7] M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, "GaN on Si technologies for power switching devices," IEEE Transactions on Electron Devices, vol. 60, pp. 3053-3059, 2013. [8] T. Ueda, H. Handa, Y. Kinoshita, H. Umeda, S. Ujita, R. Kajitani, M. Ogawa, K. Tanaka, T. Morita, and S. Tamura, "GaN-based Gate Injection Transistors for power switching applications," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 11.3. 1-11.3. 4. [9] M. H. Kwan, K.-Y. Wong, Y. Lin, F. Yao, M. Tsai, Y.-C. Chang, P. Chen, R. Su, C.-H. Wu, and J. Yu, "CMOS-compatible GaN-on-Si field-effect transistors for high voltage power applications," in 2014 IEEE International Electron Devices Meeting, 2014, pp. 17.6. 1-17.6. 4. [10] J. Würfl, O. Hilt, E. Bahat-Treidel, R. Zhytnytska, P. Kotara, F. Brunner, O. Krueger, and M. Weyers, "Techniques towards GaN power transistors with improved high voltage dynamic switching properties," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 6.1. 1-6.1. 4. [11] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, "A study on current collapse in AlGaN/GaN HEMTs induced by bias stress," IEEE Transactions on Electron Devices, vol. 50, pp. 2015-2020, 2003. [12] J. A. del Alamo and J. Joh, "GaN HEMT reliability," Microelectronics reliability, vol. 49, pp. 1200-1206, 2009. [13] J. Joh and J. A. Del Alamo, "A current-transient methodology for trap analysis for GaN high electron mobility transistors," IEEE Transactions on Electron Devices, vol. 58, pp. 132-140, 2011. [14] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, "Slow transients observed in AlGaN/GaN HFETs: effects of SiN x passivation and UV illumination," IEEE Transactions on Electron Devices, vol. 50, pp. 886-893, 2003. [15] W. Johnson and E. L. Piner, "GaN HEMT technology," in GaN and ZnO-based Materials and Devices, ed: Springer, 2012, pp. 209-237. [16] K.-Y. R. Wong, M.-H. Kwan, F.-W. Yao, M.-W. Tsai, Y.-S. Lin, Y.-C. Chang, P.-C. Chen, R.-Y. Su, J.-L. Yu, and F.-J. Yang, "A next generation CMOS-compatible GaN-on-Si transistors for high efficiency energy systems," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 9.5. 1-9.5. 4. [17] M. Ganchenkova and R. M. Nieminen, "Nitrogen vacancies as major point defects in gallium nitride," Physical review letters, vol. 96, p. 196402, 2006. [18] T. Hashizume and R. Nakasaki, "Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces," Applied physics letters, vol. 80, pp. 4564-4566, 2002. [19] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and T. Ogura, "Influence of surface defect charge at AlGaN-GaN-HEMT upon Schottky gate leakage current and breakdown voltage," IEEE Transactions on Electron Devices, vol. 52, pp. 159-164, 2005. [20] W. Tan, M. Uren, P. Houston, R. Green, R. Balmer, and T. Martin, "Surface leakage currents in SiN x passivated AlGaN/GaN HFETs," IEEE electron device letters, vol. 27, pp. 1-3, 2006. [21] H. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, "Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation," IEEE Electron device letters, vol. 24, pp. 421-423, 2003. [22] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, Y. Lu, S. Huang, and K. J. Chen, "Mapping of interface traps in high-performance Al 2 O 3/AlGaN/GaN MIS-heterostructures using frequency-and temperature-dependent CV techniques," in 2013 IEEE International Electron Devices Meeting, 2013, pp. 6.3. 1-6.3. 4. [23] A. P. Edwards, J. A. Mittereder, S. C. Binari, D. S. Katzer, D. F. Storm, and J. A. Roussos, "Improved reliability of AlGaN-GaN HEMTs using an NH 3 plasma treatment prior to SiN passivation," IEEE electron device letters, vol. 26, pp. 225-227, 2005. [24] Y. Puzyrev, T. Roy, M. Beck, B. Tuttle, R. Schrimpf, D. Fleetwood, and S. Pantelides, "Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors," Journal of Applied Physics, vol. 109, p. 034501, 2011. [25] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni, "Reliability of GaN high-electron-mobility transistors: state of the art and perspectives," IEEE Transactions on Device and Materials Reliability, vol. 8, pp. 332-343, 2008. [26] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Transactions on Electron Devices, vol. 48, pp. 560-566, 2001. [27] H. Huang, Y. C. Liang, G. S. Samudra, T.-F. Chang, and C.-F. Huang, "Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs," IEEE Transactions on Power Electronics, vol. 29, pp. 2164-2173, 2014. [28] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, S. Huang, and K. J. Chen, "High-Quality Interface in MIS Structures With In Situ Pre-Gate Plasma Nitridation," IEEE Electron Device Letters, vol. 34, pp. 1497-1499, 2013. [29] S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, "Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film," IEEE Electron Device Letters, vol. 33, pp. 516-518, 2012. [30] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E. Y. Chang, "GaN MIS-HEMTs with nitrogen passivation for power device applications," IEEE Electron Device Letters, vol. 35, pp. 1001-1003, 2014. [31] H. Lüth, Solid surfaces, interfaces and thin films vol. 4: Springer, 2001. [32] A. G. Aberle, "Overview on SiN surface passivation of crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 65, pp. 239-248, 2001. [33] Z. Zhuo, Y. Sannomiya, Y. Kanetani, T. Yamada, H. Ohmi, H. Kakiuchi, and K. Yasutake, "Interface properties of SiOxNy layer on Si prepared by atmospheric-pressure plasma oxidation-nitridation," Nanoscale research letters, vol. 8, pp. 1-6, 2013. [34] V. Nguyen, W. Lanford, and A. Rieger, "Variation of Hydrogen Bonding, Depth Profiles, and Spin Density in Plasma‐Deposited Silicon Nitride and Oxynitride Film with Deposition Mechanism," Journal of The Electrochemical Society, vol. 133, pp. 970-974, 1986. [35] D. Jin and J. A. del Alamo, "Methodology for the study of dynamic ON-resistance in high-voltage GaN field-effect transistors," IEEE Transactions on Electron Devices, vol. 60, pp. 3190-3196, 2013. [36] Z. Xu, W. Zhang, F. Xu, F. Wang, L. M. Tolbert, and B. J. Blalock, "Investigation of 600 V GaN HEMTs for high efficiency and high temperature applications," in Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, 2014, pp. 131-136. [37] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, "Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation," IEEE Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007. [38] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode," IEEE transactions on electron devices, vol. 53, pp. 2207-2215, 2006. [39] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, "Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-gate dielectrics," IEEE Electron Device Letters, vol. 31, pp. 189-191, 2010. [40] W. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage," Electronics Letters, vol. 41, pp. 449-450, 2005. [41] Q. Zhou, L. Liu, A. Zhang, B. Chen, Y. Jin, Y. Shi, Z. Wang, W. Chen, and B. Zhang, "7.6 V Threshold Voltage High-Performance Normally-Off Al 2 O 3/GaN MOSFET Achieved by Interface Charge Engineering," IEEE Electron Device Letters, vol. 37, pp. 165-168, 2016. [42] J.-H. Lee, C. Park, K.-W. Kim, D.-S. Kim, and J.-H. Lee, "Performance of Fully Recessed AlGaN/GaN MOSFET Prepared on GaN Buffer Layer Grown With AlSiC Precoverage on Silicon Substrate," IEEE Electron Device Letters, vol. 34, pp. 975-977, 2013. [43] Y.-H. Wang, Y. C. Liang, G. S. Samudra, H. Huang, B.-J. Huang, S.-H. Huang, T.-F. Chang, C.-F. Huang, W.-H. Kuo, and G.-Q. Lo, "6.5 V High Threshold Voltage AlGaN/GaN Power Metal-Insulator-Semiconductor High Electron Mobility Transistor Using Multilayer Fluorinated Gate Stack," IEEE Electron Device Letters, vol. 36, pp. 381-383, 2015. [44] J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, "Enhancement-mode GaN double-channel MOS-HEMT with low on-resistance and robust gate recess," in 2015 IEEE International Electron Devices Meeting (IEDM), 2015, pp. 9.4. 1-9.4. 4. [45] Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, "600-V Normally Off/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse," IEEE Electron Device Letters, vol. 34, pp. 1373-1375, 2013. [46] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, W. Jeon, T. Gwon, T. Moon, K. Do Kim, and C. S. Hwang, "Grain size engineering for ferroelectric Hf0. 5Zr0. 5O2 films by an insertion of Al2O3 interlayer," Applied Physics Letters, vol. 105, p. 192903, 2014. [47] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, "Evolution of phases and ferroelectric properties of thin Hf0. 5Zr0. 5O2 films according to the thickness and annealing temperature," Applied Physics Letters, vol. 102, p. 242905, 2013. [48] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, H. K. Kim, and C. S. Hwang, "Effect of forming gas annealing on the ferroelectric properties of Hf0. 5Zr0. 5O2 thin films with and without Pt electrodes," Applied Physics Letters, vol. 102, p. 112914, 2013. [49] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, and C. S. Hwang, "The effects of crystallographic orientation and strain of thin Hf0. 5Zr0. 5O2 film on its ferroelectricity," Applied Physics Letters, vol. 104, p. 072901, 2014. [50] Y.-C. Chiu, C.-H. Cheng, C.-Y. Chang, M.-H. Lee, H.-H. Hsu, and S.-S. Yen, "Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust 85° C-extrapolated 10 16 endurance," in VLSI Technology (VLSI Technology), 2015 Symposium on, 2015, pp. T184-T185. [51] Y. Seo, H.-M. An, M. Y. Song, and T. G. Kim, "Charge trap flash memory using ferroelectric materials as a blocking layer," Applied Physics Letters, vol. 100, p. 173507, 2012. [52] J. H. Park, C. W. Byun, K. H. Seok, H. Y. Kim, H. J. Chae, S. K. Lee, S. W. Son, D. Ahn, and S. K. Joo, "A hybrid ferroelectric-flash memory cells," Journal of Applied Physics, vol. 116, p. 124512, 2014. [53] S. R. Rajwade, K. Auluck, J. B. Phelps, K. G. Lyon, J. T. Shaw, and E. C. Kan, "A ferroelectric and charge hybrid nonvolatile memory—Part I: Device concept and modeling," IEEE Transactions on Electron Devices, vol. 59, pp. 441-449, 2012. [54] S. R. Rajwade, K. Auluck, J. B. Phelps, K. G. Lyon, J. T. Shaw, and E. C. Kan, "A ferroelectric and charge hybrid nonvolatile memory—Part II: experimental validation and analysis," IEEE Transactions on Electron Devices, vol. 59, pp. 450-458, 2012.
|