|
[1] CFD Research Corporation (CFDRC), 216 Wynn Drive Huntsville,AL 35805,USA [2] 李勤學、王萬良等, 混沌及其控制研究進展, 機電工程,第 5 期, 1999 年 [3] Patankar, S.V., Numerical heat transfer and fluid flow, McGraw-Hill, New York, 1980. [4] Van doormaal, J. P., and Raithby., G. D., Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows, Numer. Heat Transfer, 7,pp. 147-163, 1984. [5] S. Ostrach, Natural convection in enclosure, Advances in Heat Transfer, Vol.8, pp. 161-226, 1972. [6] G. De Vahl Davis, Natural convection of air in a square cavity : A bench mark numerical solution, International Journal for Numerical Methods in Fluids, Vol.3, pp. 249-264, 1983. [7] M. Hortmann and M. Peric and G. Scheuerer, Finite volume multigrid prediction of laminar natural convection, International Journal for Numerical Method in Fluid, Vol. 11, 189-207, 1990. [8] D.D. Gray and A. Giorgini, The validity of the Boussinesq approxination for liquids and gas, International Journal of Heat and Mass Transfer, Vol. 19, pp. 545-551, 1976. [9] C.Y. Han and S.W. Back, The e®ects of radiation on natural convection in rectangular enclosure divided bt two partitions, Numerical Heat Transfer, part A, Vol. 37, pp. 249-270, 2000. [10] K.S. Hung and C.H. Cheng, Pressure e®ects on natural convection for non-Boussinesq °uid in a rectangular enclosure, Numerical Heat Transfer, Part A, Vol. 41, pp. 515-528, 2002. [11] J.P. Abraham and E.M. Sparrow, Three-dimensional lamminar and turbulent natural convection in a continuously / discretely wall heated enclosure containing a thermal load, Numerical Heat Transfer, part A, vol.44, 291-297, 2003. [12] D. Mukutmoni and K.T. Yang, Thermal convection in small enclosures : an atypical bifurcation sequence, International Journal of Heat and Mass Transfer, Vol. 38, pp. 113-126, 1995. [13] D. Mukutmoni and K.T. Yang, Pattern selection for Rayleigh- Benard convection in intermediate aspect ratio boxes, Numerical Heat Transfer, Part A, Vol. 27, pp. 621-637, 1995. [14] Bennacer, R, El Ganaoui, M. & Leonardi, E. Vertical Bridgman con‾guration heated from below : 3D bifurcation and stability analysis. Third International Conference on CFD in the Minerals and Process Industries CSIRO, Australia, 2003. [15] Wan, D. C., Patnaik, B. S. V. & Wei, G. W. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Num. Heat Transfer, Part B, 40, 199- 228, 2001. [16] J. GleickJ., 林和譯,《混沌》,天下文化出版有限公司, 1991 [17] Lorenz, E., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20: 130-141., 1993 [18] May, R. M., Simple Mathematical Models with Very Complicated Dynamicsw, Nature, 261: 459-467., 1976 [19] West, B. J. & Goldberger, A. L., Physiology in Fractal Dimensions., American Scientist, 75: 354- 365., 1987 [20] Prigogine, I. & Stengers, I., Order out of chaos: Man s New Dialogue with Nature., Bantam: New York., 1984 [21] Levy, D., Chaos theory and strategy: theory, application, and managerial implications., Strategic Management Journal, 15: 167-178., 1994 [22] Brock, W. & Malliaris, A., Di®erential Equations, Stability and chaos in Dynamic Systems., North- Holland: New York., 1989 [23] Mandelbort, B., The Fractal Geometry of Nature., Freeman: New York., 1977 [24] Feigenbaum, M. J., Universal behavior in nonlinear systems., Physica, 7:16-39.,1983 [25] Hilborn, R. C., Chaos and Nonlinear Dynamics., Oxford University Press: New York., 1994 [26] Richardson, G. P., Loop dominance, loop polarity, and the concept of dominant polarity., In Proceedings of the 1984 International Conference of the System Dynamics Society: Oslo, Norway, 156-174., 1984 [27] Saperstein, A. M., Chaos: a model for the outbreak of war., Nature, 309: 303-305., 1984 [28] Ruelle, D. and Takens, F., On the nature of turbulence., Communications Math Physics, 20: 167- 192., 1971 [29] Crutchfield, J., Farmer J. D., Packard N. H. and Shaw R. S., Chaos., Scientific American, 225: 46-57., 1986 [30] Ruelle, D., Chaotic Evolution and Strange Attractors., Cambridge University Press: New York., 1989 [31] Feder, J., Fractals., Plenum Press: New York., 1988 [32] 劉秉正,非線性動力學與混沌基礎,台北市:徐氏基金會出 版, 1994 [33] Young, T. R., Change and chaos theory: metaphysics of the postmodern., The Social Science Journal, 28: 289- 305., 1991 [34] Radzicki, M. J., Institutional dynamics, deterministic chaos, and self-organizing systems., Journal of Economics Issue, 24: 57-101., 1990 [35] Allen, P. M., Dynamics models of evolving systems., System Dynamics Review, 4: 109-130., 1988 [36] Watanabe, M. Mitani, Y. and Tsuji, K. Assessment of power system global stability determined by unstable limit cycle., 14th Power Systems Computation Conference June 24-28, Sevilla, Spain, 2002 [37] Hoppensteadt, F. C. and Izhikevich, E. M. Synaptic organizations and dynamical properties of weakly connected neural oscillators I. Analysis of a canonical model, Biol. Cybern. 75, 117-127, 1996. [38] Bai-Lin Hao. Chaos II, World Scientific, Singapore, 1990. [39] S. M. Lin, D. Y. Lin., Percutaneous local ablation therapy in small hepatocellular carcinoma, Chang Gung Med J., vol. 26, No. 5 308-313, 2003. [40] Radionics, Cool-Tip RF Ablation, 2002. http://www.radionics.com/products/ablation/cooltip.shtml [41] Rita Medical Systems, Starburst XL needle, 2002. http://www.ritamedical.com/products.shtml [42] RadioTherapeutics, Radiofrequency Ablation System, 2002.http://www.radiotherapeutics.com/physicians.shtml [43] Isaac Chang, Finite-Element Analysis of Hepatic Radio- Frequency Ablation Probes using Temperature- Dependment Electrical Conductivity, BioMedical Engineering OnLine May. 2003. [44] Supan Tungjitkusolmun, S. Tyler Staelin, Dieter Haemmerich, Jang-Zern Tsai,Hong Cao, John G. Webster, Three-Dimensional Finite-Element Analysis for Radio-Frequency Hepatic Tumor Ablation Between, IEEE Trans. Biomed. Eng., Vol. 49, No. 1, 2002. [45] T. Lorentzen, A cooled needle electrode for radiofrequency tissue ablation, thermo-dynamic aspects of improved performance compared with conventional needle design, Acad. Radiol. 1996, 3: 556-563. [46] S. Nath, J. P. DiMarco, D. E. Haines, Basic aspects of radiofrequency catheter ablation, J. Cardiovasc Electrophysiol. 1994, 5: 863-876. [47] Chiang, T. P., Tony W. H. S. & Tsai, S. F., Topological °ow structures in backward-facing step channels., Computers & Fluids, 26, 321-337., 1997 [48] Launder, B.E. and D.B. Spaulding., The Numerical Computation of Turbulent Flows, Comp. Methods for Appl. Mech. Eng., 3: 269-289., 1974 [49] 韓親民, 空調區間空氣流動數值模擬,私立元智大學, 碩士論文, 1996 [50] P.D. Welch, A fixed-point fast Fourier transform analysisy, Electroacoust., vol. 17, No. 2, pp. 151-157.,1969. [51] A.A. Girgis and F.M. Ham, A quantitative study of pitfalls in the FFT, IEEE Trans. Aerospace and Electronic Systems, vol. AES-16, No. 4, July 1980, pp. 434-439. [52] 吳榮慶,頻譜分析技術的改進及在電機監視的應用, 國立中山大學, 博士論文, 2001 [53] 王彰鍵, 封閉腔體內之高溫差自然對流研究, 國立成功大 學, 碩士論文, 2004 [54] 涂敏芬, 以混沌觀點探討產業與技術改變, 國立清華大學, 碩士論文, 2002
|