|
[1] Alfonsi, A. and Brigo, D. (2005), “New Families of Copulas Based on Periodic Functions”, Communications in Statistics-Theory and Methods, 34, 1437-1447. [2] Ali, M.M., Mikhail, N.N., and Haq, M.S. (1978), “A Class of Bivariate Distributions Including the Bivariate Logistic”, Journal of Multivariate Analysis 8, 405-412. [3] Amblard, C. and Girard, S. (2002), “Symmetry and Dependence Properties within A Semiparametric Family of Bivariate Copulas ”, Nonparametric Statistics, Vol. 14, 6, 715-727. [4] Bairamov, I., and Kotz, S. (2002), “Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions”, Metrica, 56, 55-72. [5] Bairamov, I., Kotz, S. and Bekci, M. (2001), “New generalized Farlie-Gumbel-Morgenstern distribution and concomitants of order statistics”, Journal of Applied Statistics, Vol. 28, No. 5, 521-536. [6] Clayton, D. and Cuzick, J. (1985), “Multivariate Generalizations of the Proportional Hazards Model”, Journal of the Royal Statistical Society Series A, 148, 82-117. [7] Farlie, D.J.G. (1960), “The Performance of Some correlation coefficients for a general Bivariate distribution”, Biometrika, 47, 307-233. [8] Finkelstein, M.S. (2003), “On One Class of Bivariate Distributions”, Statistics & Probability Letters, 65, 1-6. [9] Fisher, N.I. (1997), “Copulas”,in Encyclopedia of Statistical Sciences, Update Vol. 1, 159-163, John Wiley & Son. [10] Gumbel, E.J. , “Bivariate Exponential Distributions”, Journal of the American Statistical Association, Vol. 55, No. 292, 698-707. [11] Hu, L.(2003), “Dependence Patterns Across Financial Markets: a Mixed Copulas Approach”, OSU. [12] Hung, J.S. and Kotz, S., (1999), “Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb” ,Metrika, 49, 135-145. [13] Johnson, N.L. and Kotz, S.(1975) , “On Some Generalized Farlie-Gumbel-Morgenstern Distributions ”,Communication in Statistics, 4, 415-427. [14] Johnson, N.L. and Kotz, S.(1977) , “On Some Generalized Farlie-Gumbel-Morgenstern Distributions II: Regression, Correlation An Further Generalizations ”,Communication in Statistics, 6, 485-496. [15] Kotz, S., Balakrishnan, N., and Johnson, N. S. (2000), “Continuous Multivariate Distribution”, Vol. 1, second edition, John Wiley & Son. [16] Lai, C.D. and Xie M. (2000), “A New Family of Positive Quadrant Dependent Bivariate Distribution”, Statistics & Probability Letters, 46, 359-364. [17] Li, D.X. (1999), “On default correlation: a copula function approach”, The Journal of Fixed Income, 9, 43-54. [18] Morgenstern, D. (1956) , “Einfache Beispiele zweidimensionaler Verteilungen”, Mitteilungsblatt fur Mathmatische Statistik, 8, 234-235. [19] Nelsen, R.B. (1999), “An Introduction to Copulas”, Springer, New York. [20] Rodriguez-Lallena, J.A. and Úbeda-Flores, M. (2004), “A New Class of Bivariate Copulas”, Statistics & Probability Letters, 66, 315-325. [21] Rohatgi, V.K. (1976), “An Introduction to Probability and Mathmatical Statistics”, John Wiley & Son. [22] Sklar, A. (1959), “Fonctions de reparition a n dimensions et leurs marges”,Publications de 1’Institut de Statistique de 1’Universite de Paris, 8, 229-231. [23] Sungur, E.A. (2005), “Some Observations on Copula Regression Functions”, Communications in Statistics-Theory and Methods, 34, 1976-1978.
|