跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳文獻
研究生(外文):Wen-Hsien Wu
論文名稱:一些二元機率結合函數的探討
論文名稱(外文):On Some Bivariate Copulas
指導教授:黃文濤黃文濤引用關係
指導教授(外文):Wen-Tao Huang
學位類別:碩士
校院名稱:淡江大學
系所名稱:管理科學研究所碩士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:94
語文別:中文
論文頁數:30
中文關鍵詞:二元機率結合函數二元分配
外文關鍵詞:Bivariate CopulasBivariate Distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在第一章,先回顧目前一些二元分佈和二元機率結合函數(Bivariate Copulas)相關的定義、主要定理,及目前的發展概況。接著介紹一些常見的機率結合函數,如AC族、FGM族及常態機率結合函數族。由回顧知道,經由二元機率合函數以建立二元分佈是一項很有用的工具,尤其是邊際分佈為特定分佈時,如邊際分佈為同類型時之二元指數、二元迦瑪等等。
在第二章,本文提出一個新方法以加大二元RULF機率結合函數族,並由調整加大後函數族的參數來提高|ρs|,並加大模型在實際資料的適用範圍。此外地,舉出一些由二元機率結合函所數造出之新的二元指數分配來當例子。
在第三章,經觀察Farlie(1960)及RULF族,領悟出一些新的二元機率結合函數族,但這些函數不屬於AC族、RULF族及目前一些已知的機率結合函數族。這些新的機率結合函數族,參數在某些特定值時,有正象相依(Positive Quadrant Dependence,PQD)的性質。
In chapter one, we review recent developments on bivariate distributions and bivariate copulas. We also introduce some bivariate copulas, such as Archimedean copulas, Farlie-Gumbel-Morgenstern copulas and Normal copulas . It is obvious to see that bivariate copulas is a very useful tool for constructing bivariate distributions, especially when the marginal distributions are given of the same type of distribution such as bivariate exponential distribution and bivariate gamma distribution.
In chapter two, we provide some new copulas which may be considered as some extension of RULF and this new copulas increases |ρs| and also increases its applicability for real data. We give some bivariate exponential distributions which are constructed by the proposed bivariate copulas.
Finally, in chapter three, we propose some new bivariate copulas which don’t belong to AC family nor RULF family nor other family so far it is known. Those proposed copulas possess some property of PQD.
第一章 二元分佈介紹 1
1.1 緒論 1
1.2 二元分佈相關簡介與定義 3
1.2A 機率結合函數族群 3
1.2B FGM(Farlie-Gumbel-Morgenstern)族 8
第二章 一些二元機率結合函數族之推廣 13
2.1 二元RLUF族機率結合函數之推廣 13
第三章 一些新的二元機率結合函數族 22
3.1 由Farlie(1960)所觀得之函數族 25
3.2 由RLUF所觀得之函數族 25
附錄一 RLUF族之參數估計 27

表 圖 目 錄
表2.1 定理2.3中(1)之特殊函數 15
表2.2 定理2.3中(2)之特殊函數 16
表3.1 當θ=1-e及θ=e,(3.3)式之一階動差及Spearman相關係數 23
表3.2 當θ=-1及θ=1,(3.5)式之一階動差及Spearman相關係數 23
圖3.1 θ=e時,(3.3)之機率密度函數圖 24
圖3.2 θ=1時,(3.5)之機率密度函數圖 24
圖3.3 θ=1時,(3.10)之機率密度函數圖
[1] Alfonsi, A. and Brigo, D. (2005), “New Families of Copulas Based on Periodic Functions”, Communications in Statistics-Theory and Methods, 34, 1437-1447.
[2] Ali, M.M., Mikhail, N.N., and Haq, M.S. (1978), “A Class of Bivariate Distributions Including the Bivariate Logistic”, Journal of Multivariate Analysis 8, 405-412.
[3] Amblard, C. and Girard, S. (2002), “Symmetry and Dependence Properties within A Semiparametric Family of Bivariate Copulas ”, Nonparametric Statistics, Vol. 14, 6, 715-727.
[4] Bairamov, I., and Kotz, S. (2002), “Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions”, Metrica, 56, 55-72.
[5] Bairamov, I., Kotz, S. and Bekci, M. (2001), “New generalized Farlie-Gumbel-Morgenstern distribution and concomitants of order statistics”, Journal of Applied Statistics, Vol. 28, No. 5, 521-536.
[6] Clayton, D. and Cuzick, J. (1985), “Multivariate Generalizations of the Proportional Hazards Model”, Journal of the Royal Statistical Society Series A, 148, 82-117.
[7] Farlie, D.J.G. (1960), “The Performance of Some correlation coefficients for a general Bivariate distribution”, Biometrika, 47, 307-233.
[8] Finkelstein, M.S. (2003), “On One Class of Bivariate Distributions”, Statistics & Probability Letters, 65, 1-6.
[9] Fisher, N.I. (1997), “Copulas”,in Encyclopedia of Statistical Sciences, Update Vol. 1, 159-163, John Wiley & Son.
[10] Gumbel, E.J. , “Bivariate Exponential Distributions”, Journal of the American Statistical Association, Vol. 55, No. 292, 698-707.
[11] Hu, L.(2003), “Dependence Patterns Across Financial Markets: a Mixed Copulas Approach”, OSU.
[12] Hung, J.S. and Kotz, S., (1999), “Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb” ,Metrika, 49, 135-145.
[13] Johnson, N.L. and Kotz, S.(1975) , “On Some Generalized Farlie-Gumbel-Morgenstern Distributions ”,Communication in Statistics, 4, 415-427.
[14] Johnson, N.L. and Kotz, S.(1977) , “On Some Generalized Farlie-Gumbel-Morgenstern Distributions II: Regression, Correlation An Further Generalizations ”,Communication in Statistics, 6, 485-496.
[15] Kotz, S., Balakrishnan, N., and Johnson, N. S. (2000), “Continuous Multivariate Distribution”, Vol. 1, second edition, John Wiley & Son.
[16] Lai, C.D. and Xie M. (2000), “A New Family of Positive Quadrant Dependent Bivariate Distribution”, Statistics & Probability Letters, 46, 359-364.
[17] Li, D.X. (1999), “On default correlation: a copula function approach”, The Journal of Fixed Income, 9, 43-54.
[18] Morgenstern, D. (1956) , “Einfache Beispiele zweidimensionaler Verteilungen”, Mitteilungsblatt fur Mathmatische Statistik, 8, 234-235.
[19] Nelsen, R.B. (1999), “An Introduction to Copulas”, Springer, New York.
[20] Rodriguez-Lallena, J.A. and Úbeda-Flores, M. (2004), “A New Class of Bivariate Copulas”, Statistics & Probability Letters, 66, 315-325.
[21] Rohatgi, V.K. (1976), “An Introduction to Probability and Mathmatical Statistics”, John Wiley & Son.
[22] Sklar, A. (1959), “Fonctions de reparition a n dimensions et leurs marges”,Publications de 1’Institut de Statistique de 1’Universite de Paris, 8, 229-231.
[23] Sungur, E.A. (2005), “Some Observations on Copula Regression Functions”, Communications in Statistics-Theory and Methods, 34, 1976-1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top