跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施江憲
論文名稱:微粒子追蹤術在微通道流場之量測
論文名稱(外文):MIcro particle image velocimetry in micro channel flow field measurement
指導教授:王金樹王金樹引用關係
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:粒子追蹤術微通道滑差速度
外文關鍵詞:PIVmicro channelslip velocity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要為利用PIV(Particle Image Velocimetry)量測管內徑1.52mm、1.1mm和0.4mm管內的流體速度。PIV乃一全域量測法,主要是利用光學視流(Optical Flow Visualization)技術觀察流場,其主要優點是為即時(real time)及非接觸(noncontact)式。PIV乃利用脈衝式雷射綠光( )照射質點(particle),由質點散射出光至CCD(1024×1280 pixels)接收,影像以Auto-correlation或Cross-correlation做運算,求出其質點的流動速度。
本實驗所使用的質點為矽酸鹽玻璃(Borosilicate)白色粉末,平均粒徑為10 ,密度為(1.10±0.05g/c.c )。為配合視流技術,本實驗微管選用透光率(Percentage of Transmission)92%的硼矽酸鹽玻璃毛細圓管,折射率 =1.474,並利用折射率 與硼矽酸鹽玻璃相同的甘油(glycerol),將圓管的曲面修正為平面,避免光折射的誤差。工作流體為甘油與水的調和溶液( =1.1g/c.c, ),主要為消除質點的密度所造成之重力誤差。
以注射泵浦(syringe pump)作為流場驅動源,壓力的量測乃利用量測兩段不同長短的毛細管,予以相減避免管路中的次要損失(minor loss)。壓力量測值結果發現隨著雷諾數之提高壓力值與傳統理論公式Hagen-Poiseuille equation略高一點,約為1∼10%,其現象亦與目前微通道之文章相符。
本實驗所量測是低雷諾數的範圍(0.6~22),速度量測的結果皆比理論值低,尤其在越接近管壁處,距理論值差距越大,為管壁摩擦力的影響,計算其管路中的摩擦係數 , 介於72∼93之間。
未來希望能夠朝向彎管或利用微製程做其他形狀的管路的速度分佈,可選用粒徑更小的質點(particle),做更細微的管路。或配合生物晶片,直接對晶片內的管路進行量測。
This purpose of this thesis is to use Particle Image Velocimetry(PIV) technique measure the velocity of pipe with diameters 0.4mm、1.1mm and 1.52mm. The PIV is the whole field measurement that is to use optical flow visualization technique to observe the flow field. Its has both real time and noncontact flow field measurement. We use the green pulse laser ( ) to illuminate the borosilicate glass white powder particles, which the diameter is 10 and the density is (1.10±0.05g/c.c ). The particle scatter enough light to the CCD(1024×1280 pixels) to generate the particles images. The images will be evaluated with the Auto-correlation and Cross-correlation algorithms to obtain the flow field.
In order to visualization, we choose the borosilicate glass capillary tube that both the percentage of transmission is 92% and the refractive index ( ) is 1.474. We choose glycerol that refractive index is equal to borosilicate glass then to amendment optical refraction error induced by the camber of tube then we can modify to the plane surface effects. It can to avoid the error of light refraction. The fluid is the aqueous glycerol solutions( =1.1g/c.c, ) that can eliminate the error of gravity because the particle and solution have the same density.
We use syringe pump to pump constant flow rate. During the pressure measurement, we overcome the difficult of minor pressure measuring loss by using the two different pipe lengths then we subtract the corresponding pressure values to eliminate the same minor pressure loss. The result reveal that a little higher then the tradition Hagen-Poiseuille law’s pipe pressure values about 1 to 10 percentage. The phenomenon also reveal by the papers of Gh. Mohiuddin Mala and Dongqing Li.
Compare to Hagen-Poiseuille law’s velocity field, the center velocity of measuring about 10 percentage lower, just because the slip velocity in the wall. We also find the value ‧Re between 73~92 which is constant from upstream to downstream.
In the future, we can extend our jobs to curve pipe or other shape channel. Using the nano powder also can overcome the micro channel’s measurement. Biology chip channel or MENS’s channel should be progressing in this field.
目 次
摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥i
誌謝‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥iv
目次‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥v
表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥vii
圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥viii
符號說明‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥xi
第一章 緒 論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.1前 言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.2 研究動機及目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2
1.3文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3
1.3.1 微通道(Microchannel) ‥‥‥‥‥‥‥‥‥‥‥‥‥3
1.3.2 質點影像測速法 (Particle Image Velocimetry, PIV) ‥5
第二章PIV系統之架設‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10
2.1PIV原理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10
2.1.1 PIV之運算法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10
2.1.2 質問窗(interrogation window)與重疊運算(overlay) ‥‥12
2.2 PIV量測系統‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥14
2.3PIV量測之驗證(Verification) ‥‥‥‥‥‥‥‥‥‥‥‥‥16
2.4實驗微管之選擇及修正‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17
2.5質點(Particle)之選擇 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21
2.5.1重力之影響‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥23
2.5.2阻力及布朗擴散運動之影響‥‥‥‥‥‥‥‥‥‥‥‥24
2.6 工作流體之選擇‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥25
2.7質點濃度(Particle concentration) ‥‥‥‥‥‥‥‥‥‥‥‥27
第三章 流場之架設與壓力量測‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30
3.1流場驅動源‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥30
3.2壓力計‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥31
3.3壓力量測方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34
3.4估算損失水頭‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥36
第四章實驗步驟及方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38
4.1直管量測位置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38
4.2速度理論分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥39
4.3 直管量測實驗步驟‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥42
4.4 PIV系統參數設定‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
4.5 穩定流動之測定‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥49
第五章實驗結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥51
5.1壓力量測結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥51
5.2速度量測結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥56
第六章結 論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥74
6.1結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥74
6.2未來發展‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥74
參考文獻75
附 錄80
A微通道參考文獻整理‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥80
BCCD資料 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥81
C達西方程式(Darcy equation)推導‥‥‥‥‥‥‥‥‥‥‥‥82
1.2000年美國ASHRAE冷凍空調展及馬里蘭大學具臨界點氣態壓縮系統研討會。
2.J. Eustice, ”Flow of water in curve pipes”, Proc.R.Soc. London Ser. A 84, pp 107-118, 1910.
3.J. Eustice, ”Experiments of streamline motion in curvied pipes”, Proc.R.Soc. London Ser. A 84, pp 119-131, 1911.
4.W. R. Dean, “Note on the motion of fluid in a curved pipe”, Philos.Mag 4, pp 208-223, 1927.
5.W. R. Dean, “The Streamline motion of fluid in a curved pipe”, Philos.Mag 5, pp 673-695, 1928.
6.Yeh, Y., Cummins, H.Z., " Localized Fluid Flow Measurements with a He-Ne Laser Spectrometer & quot;. Applied Physics Letters, Vol. 4, No. 10, pp 176-178, 1964.
7.Gh. Mohiuddin Mala and Dongqing Li, “Flow characteristics of water in microtubes”, International Journal of Heat and Fluid Flow, Vol.20, pp 142-148, 1999.
8.Eringen, A., “Simple microfluids”, Int. J. Eng. Sci., Vol. 2, pp 205~217, 1964.
9.Tuckerman, D. B., and Pease, R. F., “High-performance heat sinks for VLSE.”, IEEE Electron Device Lett, Vol. 2, pp 126-129,1981.
10.Tuckerman, D. B., and Pease, R. F., “Optimized convective cooling using micromachined structure.”, J.Electrochem. Soc., Vol. 129 ,No. 3, C98,1982.
11.Peiyi, W. and Little, W.A., ”Measurement of friction factors for the flow of gases in very fine channels used for microminiature JouleThomson refrigerators.” Cryogenics, Vol.23, pp 273-277,1983.
12.Wu, P.Y. and Little, W.A., ”Measurement of the friction factor for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators gas flow in fine channel heat exchanger used for microminiature JouleThomson refrigerators.”, Vol. 23, No. 5, pp 273-277. 1983.
13.Wu, P.Y. and Little, W.A., ”Measurement of the heat transfer characteristics of gas flow in fine channel heat exchanger used for microminiature JouleThomson refrigerators.” Cryogenics, Vol.24, pp 415-423,1984.
14.Harley, J. and Bau, H., “Fluid flow in micron and submicron size channel.” IEEE Trans., Vol. 249, No.3, pp 25-18,1989.
15.J. Pfahler, J. Harley, H. H. Bau and J. Zemel, “Liquid transport in micron channels”, J. Sensors Actors, Vol.21, pp 431-434,1990
16.J. Pfahler, J. Harley, H. H. Bau and J. Zemel, “Gas and liquid flow in small channels.” In Micromechanical Sensors, Actrators and Systems (Edited by D. Cho et al.), ASME DSC, Vol. 32, pp 123-134, 1991.
17.Choi, S. B., Baron, R. R., and Warrington, R. O., “Fluid flow and heat transfer in microtubes.” ASME DSC, Vol. 40, pp 89-93, 1991.
18.B. X. Wang, X. F. Peng, “Experimental Investigation on Liquid Force Convection Heat Transfer through Microchannel” International Journal Heat Mass Transfer, Vol. 37 Suppl. 1, pp 73-82, 1994.
19.X. F. Peng, G. P. Peterson, and B. X. Wang, “Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels”, Experimental Heat Transfer, Vol. 7, pp 249-264, 1994.
20.Qu Weilin, Gh. Mohiuddin Mala and Dongqing Li, “Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels”, International Journal Heat Mass Transfer, Vol. 43 , pp 353-364, 1999.
21.Tuckerman, D. B., ”Heat transfer microstructures for integrated circuits.” Ph.D. Thesis, Dept. of Electrical Engineering, Stanford University, USA.,1984.
22.Adrian R. J., “Particle-imageing techniques for experimental fluid mechanics.” Ann Rev Fluid Mech Vol. 23, pp 261-304, 1991.
23.Brodie, J. R., J. F. Reid, and T. Funk., “A machine vision system for low velocity air pattern visualization.” ASAE, Paper No. 933607.
24.Akikazu, K., Y. Katsuhito, I. Yoshio, K, Akira, K. Sinichi, and Y.Taro. “PIV system for airflow measurement using smoke particles” Proceedings of the 5th International Conference on Air Distribution in Rooms, ROOMVENT ’96, pp 421-426. 1996.
25.Muller, D. and U. Renz. “Determination of all airflow velocity components by a particle image velocimetry system.” Proceedings of the 5th International Conference on Air Distribution in Rooms, ROOMVENT ’96, pp 413-419. 1996.
26.Scholzen, F. and A. Moser. “Three-dimensional particle streak velocimetry for room airflow with automatic stereo-photogrammetric image processing.” Proceedings of the 5th International Conference on Air Distribution in Rooms, ROOMVENT ’96, pp 555-562. 1996.
27.J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian,“A particle image velocimetry system for micofluid”, Experiments in Fluid, Vol. 25, pp 316-319, 1998.
28.C. D. Meinhart, S. T. Wereley, and J. G. Santiago,”PIV measurements of a microchannel flow.” Experiments in Fluid, Vol. 27, pp 414-419, 1999.
29.Aristotle G. Koutsiaris, Dimitris S. Mathioulakis and Sokrates Tsangaris, “Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries.” Meas. Sci. Technol., Vol. 10, pp 1037-1046, 1999.
30.莊炎烈 ,微小通道之氣體流動分析, 淡江大學機械工程研究所碩士論文,1995。
31.陳冠儒,微流道內流場之阻力與熱傳特性分析,淡江大學航太工程學系研究所碩士論文,1999。
32.蕭聰鑫,微流道之熱流實驗分析,淡江大學機械工程研究所碩士論文,1999。
33.高志平,質點影像測速系統之開發,屏東科技大學機械工程技術研究所碩士論文,1998。
34.邱鵬豪,應用PIV及FLDV於直立式平版前緣馬蹄型渦流特性之分析研究,中興大學土木工程研究所碩士論文,1999。
35.譚瑋,彩色影像測速系統之發展與應用,台灣海洋大學造船工程學系碩士論文,1996。
36.蔡俊一,交替彩色影像測速系統之量測精度評估與改進,台灣海洋大學造船工程學系碩士論文,1999。
37.Markus Raffel, Christian E. Willert, and Jurgen Kompenhans Particle Image Velocimetry A Practical Guide, Springer, 1997.
38.Lange, Handbood of Chemistry, McGraw-Hill, 1985.
39.Frank M. White, Fluid Mechanics, 3th ed, McGraw-Hill, 1985.
40.Michael G. Olsen and Ronald J. Adrian, “Brownian motion and correlation in particle image velocimetry”, Optics & Laser Technology, Vol. 32, pp 621-627, 2000.
41.Robert H. Perry and Cecil H. Chilton. ,Chemical Engineers Handbook 5th McGraw-Hill, 1973.
42.Robert W. Fox and Alan T. Mcdonald, , Introduction to Fluid Mechanics 4th , John Wiley & Sons, Inc., 1992.
43.www.optical.flow.system.htm
44.李祥 編著,流體力學觀念剖析 四版,鼎茂圖書,1997。
45.翁通楹 等 編譯,機械設計手冊 二版,高立圖書,1982。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top