跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.122) 您好!臺灣時間:2026/01/06 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳國綸
研究生(外文):Kuo-Lun Wu
論文名稱:材料變形引致異向性之降伏面的探討
論文名稱(外文):On yield surfaces with deformation induced anisotropy
指導教授:洪宏基洪宏基引用關係
指導教授(外文):Hong-Ki Hong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:降伏面大變形預應變預應力
外文關鍵詞:yield surfacelarge deformationpre-strainpre-stress
相關次數:
  • 被引用被引用:1
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文為探討軸扭雙向加內壓的三維應力控制下,改良以往文獻在降伏實驗的方式,並制訂降伏探尋方法以及降伏探尋的實驗流程。利用改良後的實驗方法及流程,進行一系列的降伏面探尋,討論在不同實驗路徑、實驗控制以及材料在退火態下及施加扭向預應變後降伏面的變化。對於二維降伏面與三維降伏面的實驗結果進行相關驗證與討論,發現退火態下之初始降伏面在三維應力空間中的形狀,與von Mises橢球體降伏面不同。而材料經過預應變後,在三維降伏面的剖面上有旋轉的現象。
為了更進一步了解材料在大變形後相關力學行為,在扭向大變形實驗中將試桿夾持狀態分為自由端與固定端,對材料在不同的夾持狀態下施加不同大小的軸向預應力進行一系列的實驗。在剪切應力應變圖中,材料在夾持狀態為自由端時隨著預應力的增加而軟化,固定端時則隨著預應力的增加而硬化。在軸向應力與剪切應變中,隨著剪切應變的增加,在前段隨著預應力的大小曲線也由上往下,而在後段,隨著預應力的增加,軸向應力隨著剪切應變下降的速度也增加。
This thesis presents a complete experimental procedure to investigate the yield surface. Specimens made of aluminum alloys of Al7075 and Al6061 were tested under three-dimensional stress (strain) condition. A new definition of proof strain was introduced to determine the yield surface. The experiments of yield surface involve the determination of yield surfaces with different loading path, different control, different pre-strain and the comparison of these yield surfaces. Most experimental result found in the literature consider only two-dimensional yield surfaces. It is a challenge to determine the three-dimensional yield surfaces and it is interesting to find that yield surface rotates in three-dimensional stress space when subjected to pre-torsion.
Experiments of fixed-end torsion and free-end torsion with different pre- stress were conducted to investigate the mechanical behavior of Al6061 at large deformation level. Under the condition of free-end torsion, the higher the axial pre-stress is the lower is the shear stress-strain curve, while in the case of fixed-end torsion, a higher axial pre-stress leads to a higher shear stress-strain curve. Both tensile and compressive pre-stresses were investigated.
誌謝………………………………………………………………………i
中文摘要……………………………………………………………………ii
英文摘要……………………………………………………………………iii
目錄………………………………………………………………………iv
表目錄…………………………………………………………………vi
圖目錄……………………………………………………………………vii
第一章 導論……………………………………………………………1
1-1 前言………………………………………………………………1
1-2 文獻回顧…………………………………………………………2
1-3 研究範圍………………………………………………………4
第二章  實驗設備………………………………………………………6
2-1 實驗材料及試棒…………………………………………………6
2-2 實驗硬體設備…………………………………………………8
2-3 實驗軟體設備…………………………………………………12
第三章  三維降伏面實驗…………………………………………………13
3-1 降伏定義……………………………………………………14
3-2 軸扭雙向二維降伏面探尋………………………………………16
3-3 實驗路徑與控制方法……………………………………………18
3-4軸扭雙向與環向三維降伏面探尋…………………………………20
3-5 三維降伏面討論與驗證……………………………………………21
3-6 結語………………………………………………………………25
第四章  材料大變形實驗…………………………………………………27
4-1純扭向大變形實驗…………………………………………………27
4-2自由端扭向大變形實驗……………………………………………29
4-3固定端扭向大變形實驗……………………………………………30
4-5結語………………………………………………………………32
第五章  結論與展望………………………………………………………34
5-1結論………………………………………………………………34
5-2展望………………………………………………………………35
參考文獻…………………………………………………………………37
附錄一 實驗程序…………………………………………………………105
附錄二 MTS軸扭雙向加內壓實驗程序及紀錄表單……………………108
附錄三 環向伸長計校正程序及紀錄表單………………………………111
附錄四 應變計黏貼步驟與注意事項……………………………………113
[1]Ascione, L., Olivito, R.S. and Spadea, G., An experimental study on subsequent yield surfaces for metals, Materials and Structures, Vol.15, pp.21-26, 1982.
[2]Bailey, J.A., Naos, S.L. and Nawab, K.C., Anisotropy in plastic torsion, Journal of Basic Engineering, 94, 231, 1972.
[3]Bertsch, P.K. and Findley, W.N., An experimental study of subsequent yield surfaces-corners, normality, Bauschinger effect and allied effects, Proceedings of 4th U.S. National Congress Applied Mechanics, pp.893-907, 1962.
[4]Billington, E.W., Non-linear mechanical response of various metals: 3, Swift effect considered in relations to the stress-strain behavior in simple compression, tension and torsion, Journal of Physics D: Application of Physics, 10, 553, 1977.
[5]Bocher, L., Delobelle, P., Robinet, P. and Feaugas, X., Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loading in tension-torsion-internal and external pressure, International Journal of Plasticity, Vol.17, pp.1491-1530, 2001.
[6]Cazacu, O. and Barlat, F., Generalization of Drucker’s yield criterion to orthotropy, Mathematics and Mechanics of Solids, Vol.6, pp.613-630, 2001.
[7]Corona, E., Hassan, T. and Kyriakides, S., On the performance of kinematic hardening rules in predicting a class of biaxial ratcheting histories, International Journal of Plasticity, Vol.12, No.1, pp.117-145, 1996.
[8]Eisenberg, M.A. and Yen, C.-F., The anisotropic deformation of yield surfaces, Journal of Engineering Materials and Technology, Vol.106, pp.355-360, 1984.
[9]Ellis, J. R., Robinson, D.N. and Pugh, C.E., Time dependence in biaxial yield of type 316 stainless steel at room temperature, Journal of Engineering Materials and Technology, Vol.105, pp.250-256, 1983.
[10]Hassan, T., Corona, E., and Kyriakdes, S., Ratcheting in cyclic plasticity, PartⅡ: multiaxial behavior, International Journal of Plasticity, Vol.8, pp.117-146, 1992.
[11]Helling, D.E., Miller, A.K. and Stout, M.G., An experimental investigation of the yield surfaces of 1100-0 aluminum, 70:30 brass and an averaged 2040 aluminum alloy after various prestrains, 1986
[12]Helling, D.E. and Miller, A.K., The incorporation of yield surface distortion into a unified constitutive model. Part 1: Equation development, Acta Mechanica, Vol.69, pp.9-23, 1987.
[13]Helling, D.E. and Miller, A.K., The incorporation of yield surface distortion into a unified constitutive model. Part 2: Predictive capabilities, Acta Mechanica, Vol.72, pp.39-53, 1988.
[14]Hodierne, F.A., A torsion test for use in metal working studies, Journal of Instant Metals, 91, 267, 1962.
[15]Hughes, D.E.R., The hot-torsion test for assessing hot-working properties of steels, Journal of Iron Steel Instant, 170, 214, 1952.
[16]Ishikawa, H., Subsequent yield surface probed from its current center, International Journal of Plasticity, Vol.13, pp.533-549, 1997.
[17]Khan, A.S. and Wang, X., An experimental study on subsequent yield surfaces after finite shear pre-straining, International Journal of Plasticity, Vol.9, pp.889-905, 1993.
[18]Khan, A.S., Kazmi, R., Pandey, A. and Stoughton, T., Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. PartⅠ: A very low work hardening aluminum alloy (Al6061-T6511), International Journal of Plasticity,Vol.25, pp.1611-1625, 2009.
[19]Korkolis, Y.P. and Kyriakides, S., Inflation and burst of anisotropic aluminum tubes for hydroforming applications, International Journal of Plasticity, Vol.24, pp.509-543, 2008.
[20]Korkolis, Y.P. and Kyriakides, S., Inflation and burst of aluminum tubes. Part Ⅱ: An advanced yield function including deformation-induced anisotropy, International Journal of Plasticity,Vol.24, pp.1625-1637, 2008
[21]Kumar, A., Samanta, S.K. and Mallick, K., Study of the effect of deformation on the axes of anisotropy, Journal of Engineering Materials and Technology, Vol.113, pp.187-191, 1991.
[22]Lindholm, U.S., Nagy, A., Johnson, G.R. and Hoegfeldt, J.M., Large strain, high strain rate testing of copper, Journal of Engineering Material Technology, 102, 376, 1980.
[23]Lipkin, J. and Lowe, T.C., Axial effects during reversed torsional deformation, Advances in Plasticity, Khan, A.S. and Tokuda, M., Eds., Pergamon Press, Oxford, 1989.
[24]Mair, W.N. and Pugh, H.L.D., The effect of pre-strain on yield surfaces in copper, Journal of Mechanics Engineering Science, Vol.6, pp.150-163, 1964.
[25]Mallick, K., Samanta, S.K. and Kumar, A., An experimental study of the evolution of yield loci for anisotropic materials subjected to finite shear deformation, Journal of Engineering Materials and Technology, Vol.113, pp.192-198, 1991.
[26]Michno, M.J. and Findley, W.N., An historical perspective of yield surface investigations for metals, International Journal of Non-Linear Mechanics, Vol.11, pp.59-82, 1976.
[27]Miller, M.P. and McDowell, D.L., The effect of stress-state on the large strain inelastic deformation behavior of 304L stainless steel, ASME Journal of Engineering Materials and Technology, Vol.118, pp.28-36, 1996.
[28]Montheillet, F., Cohen, M. and Jonas, J.J., Axial stresses and texture development during the torsion testing on Al, Cu, and α-Fe, Acta Metall, Vol.32, pp.2077-2089, 1984.
[29]Naghdi, P.M., Essenburg, F. and Koff, W., Experimental study of initial and subsequent yield surface in plasticity, Journal of Applied Mechanics, Vol.25, pp.201-209, 1958.
[30]Ohashi, Y., Kawashima, K. and Yokochi, T., Anisotropy due to plasticity deformation of initially isotropic mild steel and its analytical formulation, Journal of Mechanics and Physics of Solids, Vol.23, pp.277-294, 1975.
[31]Phillips, A., Liu, C.S. and Justusson, J.W., An experimental Investigation of yield surfaces at elevated temperatures, Acta Mechanica, Vol.14, pp.119-146, 1972.
[32]Phillips, A. and Tang, J.L., The effect of loading path on the yield surface at elevated temperatures, International Journal of Solids and Structures, Vol.8, pp.463-474, 1972.
[33]Phillips, A., Tang, J.L. and Ricciuti, M., Some new observations on yield surfaces, Acta Mechanica, Vol.20, pp.23-39, 1974.
[34]Phillips, A. and Moon, H., An experimental investigation concerning yield surfaces and loading surfaces, Acta Mechanica, Vol.27, pp.91-102, 1977.
[35]Phillips, A. and Das, P.K., Yield surfaces and loading surfaces of aluminum and brass: an experimental investigation at room and elevated temperatures, International Journal of Plasticity, Vol.1, pp.89-109, 1985.
[36]Poynting, J.H., On pressure perpendicular to the shear-planes in finite pure shear, and on lengthening of loaded wires when twisted, Proceedings of the Royal Society of London Series A, Vol.82, pp. 546-559, 1909.
[37]Rees, D.W.A., An examination of yield surface distortion and translation, Acta Mechanica, Vol.52, pp.15-40, 1984.
[38]Ronay, M., On second-order strain accumulation in aluminum in reversed cyclic torsion at elevated temperatures, International Journal of Solid Structure, Vol.3, pp.167-170, 1967.
[39]Ronay, M., Second-order elongation of metal tubes in cyclic torsion, International Journal of Solids and Structure, Vol.4, pp.509-512, 1968.
[40]Shiratori, E., Ikegami, K. and Kaneko, K., The influence of the Bauschinger effect on the subsequent yield condition, Bulletin of the Japan Society of Mechanical Engineers, Vol.16, pp.1482-1493, 1973.
[41]Stout, M.G., Martin, P.L., Helling, D.E. and Canova, G.R., Multiaxial yield behavior of 1100 aluminum following various magnitudes of pre-strain, International Journal of Plasticity, Vol.1, pp.163-174, 1985.
[42]Swift, H.W., Length changes in metals under torsional overstrain, Engineering, 163, 253, 1947.
[43]Szczepinski, W., On the effect of plastic deformation on yield criterion, Acta Mechanica, Vol.15, pp.276, 1963.
[44]Takeda, T. and Chen, Z., Off-axis torsion tests on tubular specimens of steel, Journal of Engineering Materials and Technology, Vol.123, pp.268-273, 2001.
[45]Taylor, G.I. and Quinney, H., The plastic distortion of metals, Philosophical Transactions for the Royal Society of London, Vol.A230, pp.323-362, 1932.
[46]Toth, L.S., Jonas, J.J., Daniel, D. and Bailey, A., Texture development and length changes in copper bars subjected to free end torsion, Textures Microstructures, Vol.19, pp.245-262, 1922.
[47]Tozawa, Y., Plastic deformation behavior under conditions of combined stress, In: Koistinen, D.P., Wang, N.-M. (Eds.), Mechanics of Sheet Metal Forming, Plenum Press, New York, 1978.
[48]Van Arsdale, W.E., Hart, E.W. and Jenkins, J.J., Elongation upon torsion in a theory for the inelastic behavior of metals, Journal of Applied Physics, 51, 953, 1980.
[49]Weerasooriya, T. and Swanson, R.A., Experimental evaluation of the Taylor-type polycrystal model for the finite deformation of an fcc metal (OFHC copper), U.S. Army Materials Technology Laboratory, Watertown, MA, 1991.
[50]Wegener, K. and Schlegel, M., Suitability of yield functions for the approximation of subsequent yield surfaces, International Journal of Plasticity, Vol.12, pp.1151-1171, 1996.
[51]White, C.S., Bronkhorst, C.A. and Anand, L., An improved isotropic-kinematics hardening model for moderate deformation metal plasticity, Mechanics of Materials, Vol.10, pp.127-147, 1990.
[52]William, J.F. and Svensson, N.L., Effect of torsional pre-strain on the yield locus of 1100-F aluminum, The Journal of Strain Analysis for Engineering Design, Vol.6, pp.263-272, 1971.
[53]William, J.F. and Svensson, N.L., Effect of tensile pre-strain on the yield locus of 1100-F aluminum, The Journal of Strain Analysis for Engineering Design, Vol.5, pp.128-139, 1970.
[54]Wu, H.C. and Yeh, W.C., Some considerations in the endochronic description of anisotropic hardening, Acta Mechanica, Vol.23, pp.59-76, 1987.
[55]Wu, H.C. and Xu, Z., An experimental investigation of the axial effect during torsion, In: Fan, J. and Murakami S., (Eds.), Advances in Constitutive Laws for Engineering Materials, International Academic Publishers, 1989.
[56]Wu, H.C. and Yeh, W.C., On the experimental determination of yield surfaces and some results of annealed 304 stainless steel, International Journal of Plasticity, Vol.7, pp.803-826, 1991.
[57]Wu, H.C. and Ho, C.C., Strain-hardening of annealed 304 stainless steel by creep, Journal of Engineering Materials and Technology, Vol.115, pp.345-350, 1993.
[58]Wu, H.C., Xu, Z.Y., and Wang, P.T., Torsion test of aluminum in the large strain range, International Journal of Plasticity, Vol.13, pp.873-892, 1998.
[59]Wu, H.C., Effect of loading-path on the evolution of yield surface for anisotropic metals subjected to large pre-strain, International Journal of Plasticity, Vol.19, pp.1773-1800, 2003.
[60]Wu, H.C., On finite plastic deformation of anisotropic metallic materials, International Journal of Plasticity, Vol.19, pp.91-119, 2003.
[61]Wu, H.C., On stress rate and plasticity constitutive equations referred to a body-fixed coordinate system, International Journal of Plasticity, Vol.23, pp.1486-1511, 2007.
[62]Wu, H.C., Continuum Mechanics and Plasticity, 2004.
[63]吳漢津,洪宏基,An endochronic theory of plasticity using convected coordinate system,NSC -96-2811-E-002-014 國科會報告,國立台灣大學土木工程學系,台北,2009.
[64]蕭雅柏,構造用金屬材料多向循環負載與異向性研究,國立台灣大學土木工程學研究所,博士論文,台北,2000.
[65]劉志鈞,多向循環荷載下之塑性棘齒形為研究,國立台灣大學土木工程學研究所,碩士論文,台北,2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top