跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 22:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁偉涵
研究生(外文):wei-han weng
論文名稱:馬達驅動系統之智慧型控制
論文名稱(外文):Intelligent Control of Motor Drive System
指導教授:洪麟
指導教授(外文):Lin Hong
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:永磁式同步旋轉馬達磁場導向控制行波式環型超音坡馬達遺傳演算法自建遞迴式模糊類神經網路
外文關鍵詞:Permanent-magnet synchronous motorField-oriented controlTraveling wave ultrasonic motorGenetic algorithmsSelf-constructing and simplification recurrent fuzzy neural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:477
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出永磁式同步旋轉馬達及行波式環型超音波馬達兩種致動方式截然不同的致動器之動態建模與智慧型控制方法,在永磁式同步旋轉馬達的建模與驅動部分,本文推導其精確數學模型,並利用磁場導向的控制方式結合正弦波寬調變(SPWM)策略驅動馬達,在Matlab/Simulink中建構出永磁式同步馬達的驅動系統架構;環型超音波馬達的建模與驅動方式則分別採用二維解析法及LLCC共振驅動電路來完成。
在控制方面,本文針對兩種馬達的速度控制提出一自我建構及簡化之遞迴式模糊類神經網路(Self-Constructing and Simplification Recurrent Fuzzy Neural Network)來達成追蹤週期性參考模式命令。其線上學習可分成架構學習與參數學習兩個部分,架構學習演算法是判別系統是否產生模糊規則,參數學習則是利用監督式梯度遞降法來調整神經網路之連結權重值,在系統穩定後再利用模糊決策方式使其可自動刪除不重要之模糊規則,藉此達到自建遞迴式模糊類神經網路可得到架構簡單又能有良好控制性能的目標,面對不同的受控系統時,又能依據各系統的特性而建立適合該系統的模糊規則庫,進而控制各種不同的受控場。
  本文利用Simulink模擬兩種馬達之建模、驅動及控制三大部分的總集結果,並且與基因-模糊控制系統為基礎的驅動系統作比較,驗證所提的控制方法在面對兩種完全不同的驅動架構時,均能有良好且高精密的速度追蹤響應,遭受負載及參數變動時亦能具有優良的強健性。
This paper presents a dynamic modeling and intelligent control method for two different type actuators, the permanent magnet synchronous motor (PMSM) and the traveling wave ultrasonic motor (TWUSM). In the dynamic modeling and drive system of permanent magnet synchronous motor, the precise mathematical model has been derived by using a field-oriented control method and combination of sinusoidal pulse width modulation (SPWM) strategies, which are easily to construct the whole simulation system in the Matlab Simulink. For the dynamic modeling and drive system of traveling wave ultrasonic motor two-dimensional analytical method with LLCC resonant driving circuit are adopted.
In control aspect, this paper proposed a self-constructing and simplification recurrent fuzzy neural network for the speed control of two different motors to trace periodic reference trajectories. The proposed learning algorithm consists of structure learning and parameter learning. The structure learning determines neurons (fuzzy rules) generation, while the parameter learning algorithm used the supervised gradient decent method to adjust the connected weights in the consequent part. When the system is stable, fuzzy decision-making method is used to delete unimportant fuzzy rules automatically, so as to achieve a simplest structure of SCRFNN. Even confront with different system, the proposed method may create a suitable fuzzy rule base according to the characteristics of each system, and show a good control performance.
Finally, this article use Simulink to simulation the part of dynamic modeling, drive system and control of two kinds motors. After comparing simulation results with the drive system base on GA-Fuzzy control system, it can be verified the proposed control method in face of two completely different drives systems, still have good speed and high precision tracking response. When the system is subjected to load and parameter changes, it also exists good robustness.
中文摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
第一章 緒論
1.1 研究動機與目的
1.2 論文大綱
第二章 永磁式同步旋轉馬達(PMSM)
2.1 永磁式同步旋轉馬達之基本介紹與文獻回顧
2.2 永磁式同步旋轉馬達之磁場導向控制
2.2.1 座標轉換與電壓方程式
2.2.2 功率與電磁轉矩方程式
2.2.3 馬達旋轉運動方程式
2.3 永磁式同步旋轉馬達之驅動系統
2.4 傳統永磁式同步旋轉馬達驅動系統模擬
第三章 行波式環型超音波馬達(TWUSM)
3.1 行波式環型超音波馬達之基本介紹與文獻回顧
3.2 行波式環型超音波馬達動態模型
3.2.1 壓電材料之壓電方程式
3.2.2 定子與轉子接面壓力分析
3.2.3 定子動態行為特性
3.2.4 轉子之轉速與扭矩
3.3 行波式環型超音波馬達之驅動系統
3.4 傳統行波式環型超音波馬達驅動系統模擬
第四章 最佳化理論
4.1 前言
4.2 遺傳演算法基本理論
4.2.1 編碼
4.2.2 適應函數
4.2.3 複製
4.2.4 交配
4.2.5 突變
4.2.6 遺傳演算法之探討
第五章 智慧型控制理論之設計與模擬
5.1 模糊控制理論背景
5.1.1 模糊控制基本架構
5.1.2 模糊控制器結合遺傳演算法之控制系統
5.1.3 模糊控制器結合遺傳演算法於永磁式同步馬達的速度控制
5.2 類神經網路控制理論
5.2.1 類神經網路控制系統基本架構
5.2.2 模糊類神經網路控制系統
5.3 自我建構及簡化之遞迴式模糊類神經網路控制系統
5.3.1 架構學習
5.3.2 參數學習
5.3.3 自我簡化
5.4 自我建構及簡化之遞迴式模糊類神經於永磁式同步馬達的速度控制
5.5 自我建構及簡化之遞迴式模糊類神經於行波式超音波馬達的速度控制
第六章 結論與未來研究方向
參考文獻
[1]林法正、魏榮宗,《電機控制》,滄海,2002。
[2]詹前貿,《電機驅動控制》,新文京,2003。
[3]劉昌煥,《交流電機控制-第四版》,東華,2008。
[4]Urasaki, N.; Senjyu, T.; Uezato, K.; Funabashi, T. “Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive,” IEEE Transactions on Energy Conversion, Vol. 22, 2007, pp. 271-280.
[5]徐誌輝, “永磁式同步馬達之建模與控制”, 國立台灣科技大學自動化及控制研究所碩士論文,2004
[6]Rahman, M.A.; Vilathgamuwa, D.M.; Uddin, M.N.; King-Jet Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Transactions on Industry Applications, Vol. 39,2003, pp. 408-416.
[7]Xianqing Cao, and Liping Fan, “Vector controlled permanent magnet synchronous motor drive based on neural network and multi fuzzy controllers,” Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth International Conference on, Vol. 3, October 2008, pp. 254-258
[8]杜俊宇, “永磁式同步馬達之智慧型即時控制系統設計與實現”, 國立台灣科技大學自動化及控制研究所碩士論文,2008。
[9]Cetin Elmas, and Oguz Ustun, and Hasan H. Sayan, “A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive,” Expert Systems with Applications, Vol. 34, January 2008, pp. 657-664.
[10]F. J. Lin, and C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Transactions on Fuzzy Systems, Vol. 9,No. 5, October 2001, pp. 751-759.
[11]F. J. Lin, and C. H. Lin, “A permanent-magnet synchronous motor servo drive using self- constructing fuzzy neural network controller,” IEEE Transactions on Energy Conversion, Vol. 19,No. 1, March 2004, pp. 66-72.
[12]F. J. Lin, and P. H. Shen, and S. L. Yang, and P. H. Chou, “Recurrent radial basis function network -based fuzzy neural network control for Permanent-Magnet Linear Synchronous Motor Servo Drive,” IEEE Transactions on Magnetics, Vol. 42,No. 11, November 2006, pp. 3694-3705.
[13]Hung-Ching Lu, and Ming-Hung Chang, “Online speed control of permanent-magnet synchronous motor using self-constructing recurrent fuzzy neural network,” Machine Learning and Cybernetics, 2008 International Conference on, Vol. 7, July 2008, pp. 3857-3862.
[14]Urasaki, N.; Senjyu, T.; Uezato, K. “A Novel Calculation Method for Iron Loss Resistance Suitable in Modeling Permanent Magnet Synchronous Motors,” IEEE Power Engineering Review, Vol. 22 ,pp. 58–59, 2002.
[15]林法正、魏榮宗、段柔勇,《超音波馬達之驅動與智慧型控制》,滄海,1999。
[16]陳政慰, “新型單向超音波馬達之分析與實現”, 國立成功大學機械工程研究所碩士論文, 2007。
[17]K. Uchino, S. Cagatay, B. Koc, S. Dong, P. Bouchilloux, and M. Strauss, “Micro Piezoelectric Ultrasonic Motors,” Journal of Electroceramics, 13, 393-401, 2004.
[18]A. Iula and M. Pappalardo,“A High-Power Traveling Wave Ultrasonic Motor,”IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, pp. 1344-1351, 2006.
[19]S. Ueha, and Y. Tomikawa, Ultrasonic Motors: Theory and Applications. Oxford: Clarendon Press, 1993.
[20]M. Tominaga, R. Kaminaga, J. R. Friend, K. Nakamura, and S. Ueha, “An Ultrasonic Linear Motor Using Ridge-Mode Traveling Waves,”IEEE Transaction on Ultrasonics, Ferroeletrics and Frequency Control, vol.52, pp. 1735-1742, 2005.
[21]Siyuan He and Weishan Chen, “Standing Wave Bi-directional Linearly Moving Ultrasonic Motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, pp.1133-1139, 1998.
[22]A. Iino, K. Suzuki, M. Kasuga, M. Suzuki, and T. Yamanaka,“Development of a Self-Oscillating Ultrasonic Micro-Motor and Its Application to a Watch_SEIKO,”Ultrasonics 38, pp.54-59, 2000.
[23]T. Takano and Y. Tomikawa, “Linearly Moving Ultrasonic Motor Using a Multi-Mode Vibrator,”Japanese Journal of Applied Physics, vol. 28, pp. 164-166, 1988.
[24]Y. Tomikawa , T. Takano, and H. Umeda,“Thin Rotary and Linear Ultrasonic Motor Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes,”Japanese Journal of Applied Physics, vol. 31, pp. 3073-3076, 1992.
[25]M. K. Kurosawa, O. Kodaira, Y. Tsuchitoi, and T. Higuchi,“Transducer for high Speed and Large Thrust Ultrasonic Linear Motor Using Two Sandwich-Type Vibrators,”IEEE transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol.45, pp. 1188-1195, 1998.
[26]Chaodong Li and Chunsheng Zhao,“A Large Thrust Linear Ultrasonic Motor Using Longitudinal and Flexural Modes of Rod-Shaped Transducer,”IEEE Ultrasonics Symposium, pp.691-694, 1998.
[27]黃士益, “行進波式超音波馬達之分析與最佳化設計”, 國立台灣大學機械工程學研究所碩士論文, 2003。
[28]T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors. New York: Clarendon Press,1993.
[29]Norddin El Ghouti,“Hybrid Modeling of a Traveling Wave Piezoelectric Motor”, PhD Thesis Department of Control Engineering Aalborg University, Denmark ,2000.
[30]李玉忠, “應用模糊理論於超音波馬達之速度控制及系統模型參數分析”, 國立中正大學機械工程研究所碩士論文, 2003。
[31]Shyu, K. K. and Chang, C. Y., “Antiwindup Controller Design for Piezoelectric Ceramic Linear Ultrasonic Motor Drive,”IECON Proceedings (Industrial Electronics Conference), Vol. 1,pp. 341-346, 2003.
[32]T. Yamaguchi, K. Adachi, Y. Ishimine, and K. Kato, “Wear mode control of drive tip of ultrasonic motor for precision positioning,”Wear, Vol. 256, No. 1-2, pp. 145-152, January 2004.
[33]賴子發, “超音波馬達智慧型奈米定位控制系統之研究”, 國立台灣大學機械工程學研究所碩士論文, 2006。
[34]F. J. Lin, Huang, P.K., “Recurrent Fuzzy Neural Network Using Genetic Algorithm for Linear Induction Motor Servo Drive” Industrial Electronics and Applications, 2006 1ST IEEE Conference on 24-26 May 2006, pp.1-6.
[35]F. J. Lin, Shieh, P.-H., Hung, Y.-C., “An intelligent control for linear ultrasonic motor using interval type-2 fuzzy neural network,” Electric Power Applications, IET Volume 2, Issue 1, Jan. 2008 , pp.32-41.
[36]F. J. Lin, Chen, S.-Y., Hung, Y.-C., “Field-programmable gate array-based recurrent wavelet neural network control system for linear ultrasonic motor,” Electric Power Applications, IET Volume 3, Issue 4, July 2009, pp.298-312.
[37]Tien-Chi Chena, Chih-Hsien Yua, Chun-Jung Chena, Mi-Ching Tsaib, “Neuro-fuzzy speed control of traveling-wave type ultrasonic motor drive using frequency and phase modulation,” Chinese Institute of Engineeris,vol. 31, 2008
[38]許風瑋,“超音波馬達之設計及分析”, 國立雲林科技大學機械工程系碩士論文, 2002。
[39]周鵬程,《遺傳演算法原理與應用-活用Matlab》,全華,2007。
[40]陳緯典,“基於替續器回授之系統識別與控制器設計”, 國立高雄應用科技大學電機工程系碩士論文, 2009。
[41]王文俊,《認識Fuzzy-第三版》,全華,2005。
[42]林俊良,《智慧型控制-分析與設計》,全華,2005。
[43]杜祥駒,“模糊PID控制器之設計與穩定度分析”, 國立高雄應用科技大學電機工程系碩士論文, 2006。
[44]朱明輝、彭增榮,《類神經網路控制系統》,新文京,2008。
[45]張斐章、張麗秋,《類神經網路》,東華,2007。
[46]羅華強,《類神經網路-MATLAB的應用》,高立,2005。
[47]Jang, J.-S.R., “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. on Syst., Vol. 23, pp. 665–685, May 1993.
[48]C. F. Juang, and C. T. Lin, “An on-line self-constructing neural fuzzy inference network and its application,” IEEE Trans. on Fuzzy Syst., Vol. 6, pp. 12–32, February 1998.
[49]Pin-Cheng Chen, and Chun-Fei Hsu, and Chi-Hsu Wang, and Tsu-Tian Lee, “Fuzzy-identification -based adaptive backstepping control using a self-organizing fuzzy system,” Soft Computing, Vol. 13, February 2009, pp. 635-647.
[50]F. J. Lin, and S. L. Yang, and P. H. Shen, “Self-constructing recurrent fuzzy neural network for DSP-based permanent-magnet linear synchronous motor servo drive,” IEE Proc, Electric Power Applications, Vol. 153,No. 2, 2006, pp. 236-246.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top