跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.87) 您好!臺灣時間:2025/11/30 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐士凱
研究生(外文):Shih-Kai Hsu
論文名稱:雙機流程型生產環境下加權提早與延遲成本最小化之排程問題
論文名稱(外文):Two-Machine Flow Shops Scheduling to Minimize Job Independent Earliness and Tardiness Penalties with a Given Common Due Date
指導教授:沈國基沈國基引用關係
指導教授(外文):Gwo-Ji Sheen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:53
中文關鍵詞:雙機流程型生產分支界限法交期提早與延遲成本排程
外文關鍵詞:Two-machine flow shopsSchedulingEarliness and tardiness penaltiesDue dateBranch-and-bound algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討雙機流程型生產環境下加權提早與延遲成本最小化之排程問題。在這篇論文中,我們假設有多個工作它們有共同的交期要加工,權重是根據這個工作是提早或延遲完工來決定。本論文提出一個分支界限法求得一多產品之加工順序、最小加權提早與延遲成本。而我們也針對提出的分支界限法進行實驗和資料分析,用以驗證演算法的正確性和效率。
This study deals with the two-machine flow shops scheduling problem with the consideration of earliness and tardiness penalties.
There are multiple jobs with a given common due date to be scheduled. All jobs have equal earliness and tardiness weights, and the weight of a job depends on whether the job is early or late, which are job-independent. The objective is to find a schedule that minimizes the weighted sum of earliness and tardiness penalties.
We propose a number of propositions and revised Bagchi’s algorithm as a lower bound, which are implemented in our branch-and-bound algorithm to eliminate nodes efficiently in the branching tree. We also conduct computational analysis to show the validation and the effectiveness of our algorithm compared with enumeration.
Abstract...................................................................I
Table of contents..........................................................II
List of figures............................................................IV
List of tables.............................................................V
Chapter 1 Introduction.....................................................1
1.1 Motivation and background............................................1
1.2 Problem description and assumptions..................................3
1.3 Research objectives..................................................4
1.4 Research methodology and framework...................................4
1.4.1 Research methodology.............................................4
1.4.2 Research framework...............................................6
Chapter 2 Literature review................................................7
2.1 Single machine scheduling with earliness and tardiness penalties.....7
2.1.1 Sum of absolute deviations (SAD) problem.........................8
2.1.2 Weighted sum of absolute deviations (WSAD) problem...............9
2.2 Flow shops scheduling with earliness and tardiness penalties.........10
Chapter 3 Two-machine flow shops scheduling problem with job-independent weighted earliness and tardiness penalties.................................15
3.0 Notation.............................................................15
3.1 Basic propositions and branching scheme..............................16
3.2 Branch-and-bound algorithm...........................................27
Chapter 4 Computational analysis...........................................31
4.1 Validation...........................................................31
4.2 Evaluation...........................................................32
Chapter 5 Conclusion.......................................................41
5.1 Research contribution................................................41
5.2 Further research.....................................................42
References.................................................................43
Appendix...................................................................45
[1] Bagchi, U., Chang, Y-L, and Sullivan, R.S., “Minimizing Absolute and Squared Deviations of Completion Times with Different Earliness and Tardiness Penalties and a Common Due Date,” Naval Research Logistics 34, 1987, 739-751.
[2] Bagchi, U., Sullivan, R.S., and Chang, Y.-L., “Minimizing Mean Absolute Deviation of Completion Times about a Common Due Date,” Naval Research Logistics Quarterly 33, 1986, 227-240.
[3] Baker, K.R., Scudder, G.D., “Sequencing with Earliness and Tardiness Penalties:A Review,” Operations Research 38, 1990, 22-36.
[4] Birman, M., Mosheiov, G., “A Note on a Due Date Assignment on a Two-Machine Flow Shop,” Computers & Operations Research 31, 2004, 473-480.
[5] Bülbül, K., Kaminsky, P., Yano, C., “Flow Shop Scheduling with Earliness, Tardiness, and Inventory Holding Costs,” Naval Research Logistics 51, 2004, 407-445.
[6] Chen, Z.-L., “Scheduling and Common Due Date Assignment with Earliness-Tardiness Penalties and Batch Delivery Costs,” European Journal of Operational Research 93, 1996, 49-60.
[7] Garey, M.R., Johnson, D.S., Sethi, R., “The Complexity of Flowshop and Jobshop Scheduling,” Mathematics of Operations Research 1, 1976, 117-129.
[8] Gupta, J.N.D., Lauff, V., Werner, F., “Two-Machine Flow Shop Scheduling with Nonregular Criteria,” Journal of Mathematical Modelling and Algorithms 3, 2004, 123-151.
[9] Hall, N., Posner, M., “Earliness-Tardiness Scheduling Problems,Ⅰ:Weighted Deviation of Completion Times about a Common Due Date,” Operations Research 39, 1991, 836-846.
[10] Hall, N., Kubiak, W., Sethi, S., “Earliness-Tardiness Scheduling Problems, Ⅱ:Deviation of Completion Times about a Restrictive Common Due Date,” Operations Research 39, 1991, 847-856.
[11] Johnson, S.M., “Optimal Two and Three Stage Production schedules with Setup Times Included,” Naval Research Logistics Quarterly 1, 1954, 61-68.
[12] Kanet, J.J., “Minimizing the Average Deviation of Job Completion Time about a Common Due Date,” Naval Research Logistics Quarterly 28, 1981, 643-651.
[13] Lauff, V., Werner, F., “On the Complexity and Some Properties of Multi-stage Scheduling Problems with Earliness and Tardiness Penalties,” Computers and Operations Research 31, 2004, 317-345.
[14] Lauff, V., Werner, F., “Scheduling with Common Due Date, Earliness and Tardiness Penalties for Multimachine Problems: A Survey,” Mathematical and Computer Modeling 40, 2004, 637-655.
[15] Panwalkar, S.S., Smith, M.L., Seidmann, A., “Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem,” Operations Research 30, 1982, 391-399.
[16] Sarper, H., “Minimizing the Sum of Absolute Deviations about a Common Due Date for the Two-Machine Flow Shop Problem,” Applied Mathematical Modeling 19, 1995, 153-161.
[17] Sung, C.S., Min, J.I., “Scheduling in a Two-Machine Flowshop with Batch Processing Machine(s) for Earliness/Tardiness Measure under a Common Due Date,” European Journal of Operational Research 131, 2001, 95-106.
[18] Szwarc, W., “Single-Machine Scheduling to Minimize Absolute Deviation of Completion Times from a Common Due Date ,” Naval Research Logistics 36, 1989, 663-673.
[19] Ventura, J.A., Weng, M.X., “An Improved Dynamic Programming Algorithm for the Single Machine Mean Absolute Deviation Problem with a Restrictive Common Due Date,” Operations Research Letters 17, 1995, 149-152.
[20] Yeung, W.K., Oğuz, C., Cheng, T.C.E., “Two-Stage Flowshop Earliness and Tardiness Machine Scheduling Involving a Common Due Window,” International Journal of Production Economics 90, 2004, 421-434.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊