跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡佑銘
研究生(外文):You-Ming Chien
論文名稱:應用細菌趨化尋優演算法於電力系統故障區段之診測
論文名稱(外文):Application of Bacterial Foraging Algorithm for Fault Section Estimation of Power Systems
指導教授:黃世杰黃世杰引用關係
指導教授(外文):Shyh-Jier Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:64
中文關鍵詞:細菌趨化尋優演算法故障區段
外文關鍵詞:Bacterial Foraging Algorithmfault section
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑑於用戶對於供電品質之要求與日俱增,故當電力系統發生故障時,如何迅速找出故障區域,俾於進行維修復電,確已成為重要課題。基於此,本文即提出細菌趨化尋優演算法來求解電力系統故障診斷的問題,此方法乃模擬大腸桿菌於人體腸道內進行趨化作用(Chemotaxis)以獲取養分之行為,因此可應用於尋優最佳化問題之求解。其中本文經由實際系統進行測試,以驗證細菌趨化尋優算法於配電系統故障診斷之效能,並將其與其它方法測試比較,而由結果顯示,此細菌趨化尋優演算法確具較佳運算效能,且能以較少之疊代次數判定故障區段,應有助於工程人員即時預警及施行相關維修之需。
The problem of fault section estimation is very important in power systems because effective fault section estimation will help facilitate the power restoration. Therefore, in this thesis, a Bacterial Foraging Algorithm (BFA) is proposed to solve the fault section estimation problem. The theme of this method is to simulate Escherichia coli such that the nutrients in the intestine can be better searched, with such a concept it is further employed to solve the fault section estimation problems. In order to validate the effectiveness of this approach, the method has been tested through different test scenarios with comparison to other methods. From the test results, they revealed the satisfactory computation performance of justifying the section of faults in a distribution system, thereby providing a useful reference as maintenance forewarning as well.
中文摘要 I
英文摘要 II
致 謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究方法 2
1.3 論文架構 3
第二章 電力系統故障區段診測問題探討 4
2.1 前言 4
2.2 國內電力系統架構 4
2.3 電力系統自動化 5
2.3.1電力系統自動化概述 5
2.3.2電力系統自動化階層式架構 6
2.3.3電力系統自動化之故障偵測隔離復電功能 9
2.4 電力系統故障區段診測問題描述 13
2.5 本章結論 17
第三章 細菌趨化尋優演算法介紹 18
3.1 前言 18
3.2 趨化作用簡介 18
3.3 細菌趨化尋優演算法模型之建立 22
3.4 演算法計算流程 26
3.5 本章結論 30
第四章 模擬結果 31
4.1 前言 31
4.2 參數設定探討 31
4.2.1簡化系統模型描述 31
4.2.2族群總數(S) 32
4.2.3移動單位長度(C) 35
4.2.4最大前進距離(NS) 38
4.2.5總趨化步驟次數(NC) 41
4.3 實例模擬 44
4.3.1系統描述 44
4.3.2模擬結果 45
4.3.2.1群聚效應之探討 46
4.3.2.2趨化性運動之探討 48
4.4與進化規劃法之測試結果比較 50
4.5本章結論 57
第五章 結論及未來研究方向 58
5.1 結論 58
5.2 未來研究方向 59
參考文獻 60
作者簡介 64
[1]Y. Sekine, Y. Akimoto, M. Kunugi, C. Fukui and S. Fukui, “Fault Diagnosis of Power Systems”, Proceedings of the IEEE, Vol. 80, pp. 673-683, 1992.
[2]F. S. Wen and Z. X. Han, “Fault Section Estimation in Power Systems Using a Genetic Algorithm”, Electric Power Systems Research, Vol. 34, pp. 165-172, 1995.
[3]F. S. Wen and C. S. Chang, “A New Approach to Fault Diagnosis in Electrical Distribution Networks Using a Genetic Algorithm”, Artificial Intelligence in Engineering, Vol. 12, pp. 69-80, 1998.
[4]F. S. Wen and C. S. Chang, “Probabilistic Approach for Fault-Section Estimation in Power Systems Based on a Refined Genetic Algorithm”, Proceedings of the IEE Generation, Transmission and Distribution, Vol. 144, pp. 160-168, 1997.
[5]L. L. Lai, A. G. Sichanie and B. J. Gwyn, “Comparison between Evolutionary Programming and a Genetic Algorithm for Fault-Section Estimation”, Proceedings of the IEE Generation, Transmission and Distribution, Vol. 145, pp. 616-620, 1998.
[6]Y. X. Wu, X. N. Lin, S. H. Miao, P. Liu, D. Q. Wang and D. B. Chen, “Application of Family Eugenics Based Evolution Algorithms to Electric Power System Fault Section Estimation”, IEEE/PES Transmission and Distribution Conference & Exhibition, pp. 1-5, 2005.
[7]F. S. Wen and C. S. Chang, “A Tabu Search Approach to Fault Section Estimation in Power Systems”, Electric Power Systems Research, Vol. 40, pp. 63-67, 1997.
[8]T. Oyama, “Fault Section Estimation in Power System Using Boltzmann Machine”, Second Forum on Artificial Neural Network Applications to Power Systems, Yokohama, Japan, pp. 3-8, 1993.
[9]L. L. Lai, “Application of Neural Networks to Fault Classification and Protection”, Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, Vol. 1, pp. 72-76, 1997.
[10]Z. E. Aygen, S. Seker, M. Bagriyanik, F. G. Bagriyanik and E. Ayaz, “Fault Section Estimation in Electrical Power Systems Using Artificial Neural Network Approach”, IEEE Transmission and Distrbution Conference, Vol. 2, pp. 466-469, 1999.
[11]S. J. Huang, “Application of Immune-Based Optimization Method for Fault-Section Estimation in a Distribution System”, IEEE Transactions on Power Delivery, Vol. 17, pp. 779-784, 2002.
[12]C. C. Liang, “An Overview of the Hierarchical Dispatch and Control System in Taipower”, IEEE Transactions on Power Systems, Vol. 5, pp.1041-1045, 1990.
[13]台灣電力公司, http://www.taipower.com.tw
[14]“配電技術手冊(一) 配電系統規劃”,台灣電力公司,2004年。
[15]“技術資料(三)-地下配電規劃設計”,台灣電力公司,1991年。
[16]“配電技術手冊(四)-地下配電線路設計”,台灣電力公司,1996年。
[17]S. M. Amin and B. F. Wollenburg, “Toward a Smart Grid: Power Delivery for the 21st Century”, IEEE Power and Energy Magazine, Vol. 3, pp. 34-41, 2005.
[18]W. Li, P. Wang, Z. Li, and Y. Liu, “Reliability Evaluation of Complex Radial Distribution Systems Considering Restoration Sequence and Network Constraints”, IEEE Transactions on Power Delivery, Vol.19, pp. 753-758, 2004.
[19]J. R. Carnes, A. Misra and J. Sztipanovits, “Model-integrated Foolset for Fault Detection, Isolation and Recovery (FDIR)”, IEEE Symposium and Workshop on Engineering of Computer-Based Systems, pp. 356-363, 1996.
[20]E. Aghabarari and C. J. Adams, “Off-nominal Conditions and Caution and Warning Techniques for the Electric Power System for the International Space Station”, Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, Vol. 4, pp. 2246-2251, 1997.
[21]http://www.mathworks.com/product/matlab
[22]K. M. Passino, “Biomimicry of Bacterial Foraging for Distributed Optimization and Control”, IEEE Control Systems Magazine, Vol. 22, pp. 52-67, 2002.
[23]S. Mishra, “Hybrid Least-Square Adaptive Bacterial Foraging Strategy for Harmonic estimation”, Proceedings of the IEE Generation, Transmission and Distribution, Vol. 152, pp. 379-389, 2005.
[24]S. Mishra and C. N. Bhende, “Bacterial Foraging Technique-Based Optimized Active Power Filter for Load Compensation”, IEEE Transactions on Power Delivery, pp. 457-465, 2007.
[25]D. H. Kim and J. H. Cho, “A Biologically Inspired Intelligent PID Controller Tuning for AVR systems”, International Journal of Control, Automation, and Systems, Vol. 4, pp. 624-636, 2006.
[26]W. J. Tang, M. S. Li, S. He, Q. H. Wu and J. R. Saunders, “Optimal Power Flow with Dynamic Loads Using Bacterial Foraging Algorithm”, IEEE International Conference on Power System Technology, pp. 1-5, 2006.
[27]W. J. Tang, Q. H. Wu and J. R. Saunders, “A Bacterial Swarming Algorithm for Global Optimization”, IEEE Congress on Evolutionary Computation, pp. 1207-1212, 2007.
[28] W. Lin, R. Liu, X. Liu and Q. H. Meng, “Parameter Estimation using Biologically Inspired Methods”, IEEE International Conference on Robotics and Biomimetics, pp. 1339-1343, 2007.
[29]B. Majhi and G. Panda, “Bacterial Foraging Based Identification of Nonlinear Dynamic System”, IEEE Congress on Evolutionary Computation, pp. 1636-1641, 2007.
[30]V. Ramos, C. Fernandes, A. C. Rosa and A. Abraham, “Computational Chemotaxis in Ants and Bacteria over Dynamic Environments”, IEEE Congress on Evolutionary Computation, pp. 1109-1117, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top