林育中.(2002). 看他們怎麼 ”烹調帳簿”. 茂德科技股份有限公司- 產業分析專欄http://www.promos.com.tw/website/chinese/industrylist.jsp?id=1029829831253
林嬋娟, 張婷茹. (2006). 財務報導舞弊之研究研究成果報告(精簡版) 行政院國家科學委員會專題研究計畫, 1-8.
林豐澤. (2005). 演化式計算下篇:基因演算法以及三種應用實例. 智慧科技與應用統計學報 34(1), 29-56.張珂偉. (2005). 企業舞弊的相關博弈分析和治理探討. 常州紡織服裝職業技術學院監察審計處. http://big5.eastday.com:82/gate/big5/sjj.eastday.com/node2/node9/node32/ula7139.html
游輝城, 江向才. (2007). 高階管理團隊異動與財務報表重編之研究. 逢甲大學會計學系碩士班碩士論文 1-52.劉仁嘉, 李錫智. (2009). 應用於文件分類的自建構式模糊特徵擷取法. 國立中山大學電機工程學系碩士論文, 1-75.陳慶瀚. (2002). 類神經網路 Self-Organizing Map Neural Network 義守大學電機系, 1-13.
詹智強, 黃志雄. (2003). 應用資料採礦分析線上拍賣市場之模式. 朝陽科技大學工業工程與管理系碩士論文, 50-62.Agrawal, A., & Jaffe, J. F. (1993). Mangement Turnover and Governance Changes Following the Revelation of Fraud. Journal of Law and Economics, 36, 309-342.
Aguado, D., Montoya, T., Borras, L., Seco, A., & Ferrer, J. (2008). Using SOM and PCA for analysing and interpreting data from a P-removal SBR. Engineering Applications of Artificial Intelligence, 21, 919-930.
Apparao, G., Singh, P. A., Rao, G. S., Bhavani, B. L., & Rajani, D. (2009). Financial Statement Fraud Detection by Data Mining. Advanced Networking and Applications, 1(3), 159-163.
Babu, B. V., & Munawar, S. A. (2007). Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chemical Engineering Science, 62, 3720-3739.
Bai, B., Yen, J., & Yang, X. (2008). False Financial Statements: Characteristics of China'S listed Companies and Cart Detecting Approach. International Journal of Information Technology & Decision Making, 7(2), 339-359.
Baker, J. E. (1985). Reducing bias and inefficiency in the selection algorithm. In Proc. 2nd Int. Conf. Genetic Algorithm, 14-21.
Barakat, N., & Bradley, A. P. (2010). Rule extraction from support vector machines: A review. Neurocomputing, 74, 179-190.
Barakat, N., & Diederich, J. (2006). Eclectic Rule-Extraction from Support Vector Machines. World Academy of Science, Engineering and Technology, 17, 331-334.
Barakat, N. H., & Bradley, A. P. (2007). Rule Extraction from Support Vector Machines: A Sequential Covering Approach. IEEE Transactions on Knowledge and Data Engineering, 19(6), 729-741.
Beasley, M. S. (1996). An Empirical Analysis of the Relation Between the Board of Director Composition and Financial Statement Fraud. The Accounting Review, 71(4), 443-463.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press.
Brest, J., Zamuda, A., Fister, I., Boˇskovi´, B., & Mauˇcec, M. S. (2011). Constrained Real-Parameter Optimization using a Differential Evolution Algorithm. IEEE, 1-8.
Brouwer, R. K., & Groenwold, A. (2010). Modified fuzzy c-means for ordinal valued attributes with particle swarm for optimization. Fuzzy Sets and Systems, 161, 1774-1789.
Budayan, C., Dikmen, I., & Birgonul, M. T. (2009). Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy C-means method for strategic grouping. Expert Systems with Applications, 36, 11772-11781.
Cai, W., Chen, S., & Zhang, D. (2007). Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition Letters, 40, 825-838.
Cai, Y. D., Liu, X. J., Xu, X. B., & Chou, K. C. (2002). Support vector machines for predicting the specificity of GalNAc-transferase. Peptides, 23, 205-208.
Cao, L. (2003). Support vector machines experts for time series forecasting. Neurocomputing, 51, 321-339.
Chen, C. S., Cheng, M. Y., & Wu, Y. W. (2012). Seismic assessment of school buildings in Taiwan using the evolutionary support vector machine inference system. Expert Systems with Applications, 39, 4102-4110.
Chen, H. J., Huang, S. Y., & Kuo, C. L. (2009). Using the artificial neural network to predict fraud litigation: Some empirical evidence from emerging markets. Expert Systems with Applications, 1478-1484.
Chen, S. T., Yu, P. S., & Tang, Y. H. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385, 13-22.
Chen, T. (2007). Incorporating fuzzy c-means and a back-propagation network ensemble to job completion time prediction in a semiconductor fabrication factory. Fuzzy Sets and Systems, 158, 2153-2168.
Chen, Y., Wang, G., & Dong, S. (2003). Learning with progressive transductive support vector machine. Pattern Recognition Letters, 24, 1845-1855.
Chiou, J. P., Chang, C. F., & Su, C. T. (2005). Variable Scaling Hybrid Differential Evolution for Solving Network Reconfiguration of Distribution Systems. IEEE Transactions on Power Systems, 20(2), 668-674.
Christmann, A., & Hable, R. (2012). Consistency of support vector machines using additive kernels for additive models. Computational Statistics and Data Analysis, 56, 845-873.
Chu, C. H., Yue, D., Wu, X., Wang, Y., & Li, Y. (2007). A Review of Data Mining-based Financial Fraud Detection Research. IEEE, 5519-5522.
Coelho, L. D. S., Bora, C. T., & Lebensztajn, L. (2012). A Chaotic Approach of Differential Evolution Optimization Applied to Loudspeaker Design Problem. IEEE Transactions on Magnetics, 48(2), 751-754.
Cruz, I. L. L., Willigenburg, L. G. V., & Straten, G. V. (2003). Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 3, 97-122.
D.Martens, Baesens, B., Gestel, T. V., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 1-11.
Drucker, H., Wu, D., & Vapnik, V. N. (1999). Support Vector Machines for Spam Categorization. IEEE, 1-7.
Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software modules using support vector machines. The Journal of Systems and Software, 81, 649-660.
Fanning, K., & Cogger, K. O. (1998). Neural Network Detection of Management Fraud Using Published Financial Data. International Journal of Intelligent Systems in Accounting, Finance & Management, 7(1), 21-24.
Fanning, K., Cogger, K. O., & Srivastava, R. (1995). Detection of Management Fraud: A Neural Network Approach. IEEE, 220-223.
Fernandez, V. (2007). Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry. Resources Policy, 32, 80-89.
Fich, E. M., & Shivdasani, A. (2007). Financial fraud, director reputation, and shareholder wealth. Journal of Financial Economics, 86, 306-336.
Fister, I., & Brest, J. (2011). Using Differential Evolution for the Graph Coloring. IEEE, 1-7.
Furukawa, T. (2009). SOM of SOMs. Neural Networks, 22, 463-478.
Ghouila, A., Yahia, S. B., Malouche, D., Jmel, H., Laouini, D., Guerfali, F. Z., & Abdelhak, S. (2009). Application of Multi-SOM clustering approach to macrophage gene expression analysis. Infection, Genetics and Evolution, 9, 328-336.
Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50, 595-601.
Goel, S., Gangolly, J., Faerman, S. R., & Uzuner, O. (2010). Can Linguistic Predictors Detect Fraudulent Financial Filings? Journal of emerging technologies in accounting, 7, 25-46.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.
Grekousis, G., & Thomas, H. (2012). Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The Fuzzy C-Means and GustafsoneKessel methods. Applied Geography, 34, 125-136.
Hansen, J. V., McDonald, J. B., Messier, W. F., & Bell, T. B. (1996). A Generalized Qualitative-response Model and the Analysis of Management Fraud Management Science, 42(7), 1022-1032.
He, X., Zhang, Q., Sun, N., & Dong, Y. (2009). Feature selection with discrete binary differential evolution. IEEE, 327-330.
Hicks, C. (2006). A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry. Int. J. Production Economics, 104, 598-614.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Annarbor, Michigan: The University of Michigan Press.
Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, 37, 543-558.
Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50, 585-594.
Hung, W. L., Yang, M. S., & Chen, D. H. (2008). Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters, 29, 1317-1325.
Hylas, R. E., & Ashton, R. H. (1982). Audit Detection of Financial Statement Errors. The Accounting Review, 57(4), 751-765.
Iliadis, L. S., Vangeloudh, M., & Spartalis, S. (2010). An intelligent system employing an enhanced fuzzy c-means clustering model: Application in the case of forest fires. Computers and Electronics in Agriculture, 70, 276-284.
Joachims, T. (1998). Text Categorization with Support Vector Machines Learning with Many Relevant Features. European Conference on Machine Learning (ECML), 1-6.
Johnson, V. E., Khurana, I. K., & Reynolds, J. K. (2002). Audit-Firm Tenure and the Quality of Financial Reports. Contemporary Accounting Research, 19(4), 637-660.
Küçükdeniz, T., Baray, A., Ecerkale, K., & Esnaf, S. (2012). Integrated use of fuzzy c-means and convex programming for capacitated multi-facility location problem. Expert Systems with Applications, 39, 4306-4314.
Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and Comparison of Metaheuristic Techniques to Generation Expansion Planning Problem. IEEE, 20(1), 446-475.
Khushaba, R. N., Ani, A. A., & Jumaily, A. A. (2008). Differential Evolution based Feature Subset Selection. IEEE, 1-4.
Khushaba, R. N., Ani, A. A., & Jumaily, A. A. (2011). Feature subset selection using differential evolution and a statistical repair mechanism. Expert Systems with Applications, 38, 11515-11526.
Kiang, M. Y., Fisher, D. M., Chen, J. C. V., Fisher, S. A., & Chi, R. T. (2009). The application of SOM as a decision support tool to identify AACSB peer schools. Decision Support Systems, 47, 51-59.
Kinney, William, McDaniel, & Linda. (1989). Characteristics of firms correcting previously reported quarterly earnings. Journal of Accounting and Economics, 11, 71-93.
Kirkos, E., Spathis, C., & Manolopoulos, Y. (2005). Detection of Fraudulent Financial Statements through the use of Data Mining Technique. 2nd International Conference on Enterprise Systems and Accounting 1-16.
Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data Mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 995-1003.
Koh, A. (2009). An Adaptive Differential Evolution Algorithm Applied to Highway Network Capacity Optimization. Applications of Soft Computing, 221-220.
Kohonen, T. (1990). The Self-Organizing Map. IEEE, 7(89), 1464-1480.
Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006a). Forecasting Fraudulent Financial Statements using Data Mining International Journal of Computational Intelligence, 104-110.
Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006b). Predicting Fraudulent Financial Statements with Machine Learning Techniques. Springer-Verlag Berlin Heidelberg, 3955, 538-542.
Lafferty, J., & Lebanon, G. (2005). Diffusion Kernels on Statistical Manifolds. Journal of Machine Learning Research, 6, 129-163.
Lee, M., & Pedrycz, W. (2009). The fuzzy C-means algorithm with fuzzy P-mode prototypes for clustering objects having mixed features. Fuzzy Sets and Systems, 160, 3590-3600.
Liao, T. W. (2010). Two hybrid differential evolution algorithms for engineering design optimization. Applied Soft Computing, 10, 1188-1199.
Lin, G. F., & Wu, M. C. (2007). A SOM-based approach to estimating design hyetographs of ungauged sites. Journal of Hydrology, 339, 216-226.
Liu, J., & Xu, M. (2008). Kernelized fuzzy attribute C-means clustering algorithm. Fuzzy Sets and Systems, 159, 2428-2445.
Manjula, B., Sarma, S. S. V. N., Govardhan, A., & Naik, R. L. (2011). DFFS: Detecting Fraud in Finance Sector. Advanced Engineering Sciences and Technologies, 9(2), 178-182.
Martens, D., Baesens, B., Gestel, T. V., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183, 1466-1476.
Mingoti, S. A., & Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means,K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174, 1742-1759.
Núñez, H., Angulo, C., & Català, A. (2002a). Rule extraction from support vector machines. European Symposium on Artificial Neural Networks, 107-112.
Núñez, H., Angulo, C., & Català, A. (2002b). Support Vector Machines with Symbolic Interpretation. IEEE, 1-6.
Núñez, H., Angulo, C., & Catala, A. (2003). Hybrid Architecture Based on Support Vector Machines Springer-Verlag Berlin Heidelberg, 646-653.
N´u˜nez, H., Angulo, C., & Catal`, A. (2008). Rule Extraction Based on Support and Prototype Vectors. Studies in Computational Intelligence, 80, 109-134.
N´u˜nez, H., Angulo, C., & Catal`a, A. (2005). Rule Based Learning Systems for Support Vector Machines. Kluwer Academic Publishers, 1-20.
Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 559-563.
Noktehdan, A., Karimi, B., & Kashan, A. H. (2010). A differential evolution algorithm for the manufacturing cell formation problem using group based operators. Expert Systems with Applications, 37, 4822-4829.
Obeua. (1995). Using Financial Statement Data to Identify Factor Associated with Fraudulent Financial Reporting. Journal of Applied Business Research, 11(3), 38-46.
Ortells, L. E., & Wernick, M. N. (2011). Spatial Fuzzy Clustering with Simultaneous Estimation of Markov Random Field Parameters and Class. Medical Imaging Research Center, Illinois Institute of Technology Telecom BCN, Polytechnic University of Catalonia, 31-34.
Osuna, E., Freund, R., & Girosit, F. (1997). Training Support Vector Machines: an Application to Face Detection. IEEE(130-136).
Pan, Q. K., Suganthan, P. N., Wang, L., Gao, L., & Mallipeddi, R. (2011). A differential evolution algorithm with self-adapting strategy and control parameters. Computers & Operations Research, 38, 394-408.
Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2007). A Discrete Differential Evolution Algorithm for the Permutation Flowshop Scheduling Problem. Computers & Industrial Engineering, 126-133.
Pan, Q. K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers & Operations Research, 36(2498-2511).
Park, D. C. (2009). Classification of audio signals using Fuzzy c-Means with divergence-based Kernel. Pattern Recognition Letters, 30, 794-798.
Phillips, W. E., Velthuizen, R. P., Phuphanichl, S., Clarke, L. P., & Silbiger, M. L. (1995). Application of Fuzzy C-means Segmentation Technique for Tissue Differentiation in MR Images of A Hemorrhagic Glioblastoma Multiforme. Magnetic Resonance Imaging, , 13(2), 277-290.
Pitiranggon, P., Benjathepanun, N., Banditvilai, S., & Boonjing, V. (2010). Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals. World Academy of Science, Engineering and Technology, 68, 239-246.
Qian, W., & li, A. (2008). Adaptive differential evolution algorithm for multiobjective optimization problems. Applied Mathematics and Computation, 201, 431-440.
Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50, 491-500.
Reddy, M. J., & Kumar, D. N. (2007). Multiobjective Differential Evolution with Application to Reservoir System Optimization. Computing in Civil Engineering, 136-146.
Renner, G., & Eka´rt, A. (2003). Genetic algorithms in computer aided design. Computer-Aided Design, 35, 709-726.
S"anchez, V. D. (2003). Advanced support vector machines and kernel methods. Neurocomputing, 55, 5-20.
Santarelli, S., Yu, T. L., Goldberg, D. E., Altshuler, E., Donnell, T., Southall, H., & Mailloux, R. (2006). Military antenna design using simple and competent genetic algorithms. Mathematical and Computer Modelling, 43, 990-1022.
Spathis, C. T. (2002). Detecting false financial statements using published data: some evidence from Greece. Managerial Auditing Journal, 17(4), 179-191.
Storn, R. (1996). On the Usage of Differential Evolution for Function Optimization. IEEE, 519-523.
Storn, R. (1999). System Design by Constraint Adaptation and Differential Evolution. IEEE, 22-34.
Storn, R., & Price, K. (1995). Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, 1-12.
Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37, 8659-8666.
Summers, S. L., & Sweeney, J. T. (1998). Fraudulently Misstated Financial Statements and Insider Trading:An Empirical Analysis The Accounting Review, 73, 131-146.
Tan, K. S., & Isa, N. A. M. (2011). Color image segmentation using histogram thresholding – Fuzzy C-means hybrid approach. Pattern Recognition Letters, 44, 1-15.
Tang, H., Xue, S., & Fan, C. (2008). Differential evolution strategy for structural system identification. Computers and Structures, 86, 2004-2012.
Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847-861.
Ting, H., Jingling, S., & Meiyan, L. (2011). Quantitative identification of illicit drugs by using SOM neural networks. Measurement, 44, 391-398.
Tjhai, G. C., Furnell, S. M., Papadaki, M., & Clarke, N. L. (2010). A preliminary two-stage alarm correlation and filtering system using SOM neural network and K-means algorithm. computers & security, 29, 712-723.
Tokunaga, K., & Furukawa, T. (2009). Modular network SOM. Neural Networks, 22, 82-90.
Tripathi, S., Srinivas, V. V., & Nanjundiah, R. S. (2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330, 621-640.
Unem, R. K., & Vadstrup, P. (2003). Parameter Identification of Induction Motors Using Differential Evolution IEEE, 790-796.
Vázquez-Sánchez, E., Gómez-Gil, J., Gamazo-Real, J. C., & Díez-Higuera, J. F. (2012). A New Method for Sensorless Estimation of the Speed and Position in Brushed DC Motors Using Support Vector Machines. IEEE Transactions on Industrial Electronics, 59(3), 1397-1408.
Vapnik, V., & Cortes, C. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.
Wang, Y., Li, B., & Weise, T. (2010). Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems. Information Sciences, 180, 2405-2420.
Wirth, H., Bergen, M., Murugaiyan, J., Rösler, U., Stokowy, T., & Binder, H. (2012). MALDI-typing of infectious algae of the genus Prototheca using SOM portraits. Journal of Microbiological Methods, 88, 83-97.
Wu, Y., Lu, J., & Sun, Y. (2008). An Improved Differential Evolution for Optimization of Chemical Process. Chinese Journal of Chemical Engineering, 16(2), 228-234.
Xianwen, Z., & Jingfu, L. (2011). Image recognition method based on artificial life and support vector machine. Energy Procedia 11, 1255-1259.
Yadav, V., & Srinivasan, D. (2011). A SOM-based hybrid linear-neural model for short-term load forecasting. Neurocomputing, 74, 2874-2885.
Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50, 570-575.
Zou, D., Liu, H., Gao, L., & Li, S. (2011). An improved differential evolution algorithm for the task assignment problem. Engineering Applications of Artificial Intelligence, 24, 616-624.