跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/23 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許超能
研究生(外文):Shiu, Chauneng
論文名稱:應用分群演算法改進SVM+Prototypes於財務報表審計風險之分析
論文名稱(外文):Application of clustering algorithms to improve the SVM+Prototypes for analyzing the financial statement audit risk
指導教授:白炳豐白炳豐引用關係
指導教授(外文):Pai, Pingfeng
口試委員:張炳騰傅家啟時序時
口試委員(外文):Chang, PingtengFu, JachihShih, Hsushih
口試日期:2012-06-20
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:80
中文關鍵詞:財務報表審計風險分群演算法支援向量機模糊C-means自我組織映射
外文關鍵詞:SVM+PrototypesFinancial statements audit riskClustering algorithmSupport vector machines(SVM)Fuzzy C-meansSelf-organizing map(SOM)K-means
相關次數:
  • 被引用被引用:1
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
財務報表提供了投資人了解企業經營的成果以及財務狀況,但在近年來財務報表問題案例頻傳,影響的不僅僅是投資人無法依據財務報表做出即時判斷更消耗了社會許多資源,因此本研究利用了財務資料以及透明度判斷財務報表是否擁有審計風險,其中使用支援向量機預測財務報表審計風險的可能性,接著利用SVM+Prototypes對支援向量機提取出規則,最後利用兩種分群演算法Fuzzy C-means以及自我組織映射希望能加以改良SVM+Prototypes中的Prototype,在研究顯示出利用Fuzzy C-means較能有效的提高準確率以及覆蓋率,而利用自我組織映射則幫助不大,因此可利用較佳的規則判斷某家企業之財務報表是否擁有審計的風險以及解釋,並給予財務報表使用者一個判斷的根據。
The financial statements provide investors understand the business of operating results and financial position. In recent years, the financial statements of problem are frequent and affect not only the investor can’t make immediate judgment based on the financial statements but also consumption of many resources of the community. This study use financial information and transparency to judge the financial statements whether has audit risk, first using support vector machine to predict the risk of financial statement audits, then use the SVM + Prototypes for support vector machines to extract rules. Finally, using Fuzzy C-means and self-organizing map hope can be improved the SVM + Prototypes. Researching has shown that using Fuzzy C-means more effective to increase the accuracy and coverage but self-organizing map does not. A judgment in accordance with better rule to determine a company's financial statements whether has the audit risk and explain, then give a basis for judgment to the users of financial statements.
目錄
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 vii
第一章 緒論 1
第二章 文獻探討 6
2.1財務報表問題議題之研究 6
2.2差分演算法 10
2.3支援向量機 13
2.4 SVM+Prototypes 15
2.5 Fuzzy C-means 17
2.6自我組織映射(Self-Organizing Map, SOM) 19
第三章 分群演算法 22
3.1分群演算法簡介 22
3.2階層式分群法 23
3.3 K-means 26
3.4自我組織映射 28
3.5 Fuzzy c-means 32
第四章 研究方法 34
4.1差分演化法 34
4.2基因演算法 37
4.3支援向量機 43
4.4 SVM+Prototypes 48
4.5 SVM+ fuzzy C-means Prototypes 、 SVM+ SOM Prototypes 54
第五章 資料分析 56
第六章 研究架構與實驗結果 63
6.1研究架構 63
6.2實驗結果 64
圖目錄
圖一 促使財務報表問題發生的三要素 4
圖二 階層式分裂演算法以及階層式聚合演算法 23
圖三 單一鏈結演算法 23
圖四 完整鏈結演算法 24
圖五 中心法 24
圖六 K-means流程圖 27
圖七 K-means示意圖 28
圖八 類神經網路架構 29
圖九 墨西哥帽函數 30
圖十 自我組織映射鄰近區域 31
圖十一 Fuzzy C-means、K-means之隸屬函數 33
圖十二 差分演化法流程圖 37
圖十三 基因演算法流程圖 38
圖十四 輪盤法 40
圖十五 單點交配法 41
圖十六 雙點交配法 42
圖十七 多點(遮罩)交配法 42
圖十八 二進制編碼突變 42
圖十九 實數編碼突變 43
圖二十 比較最佳區分超平面 44
圖二十一 支援向量機結構 45
圖二十二 高維度轉變為低維度 47
圖二十三 支援向量機截取規則四大類 49
圖二十四 SVM+Prototypes兩種規則 50
圖二十五 超矩形一分為二 53
圖二十六 橢圓與超矩形之差異 54
圖二十七 挑選屬性 61
圖二十八 研究流程圖 64
圖二十九 研究結果:準確率加覆蓋率 68
圖三十 分群演算法基於離群值之比較 71
圖三十一 分群演算法基於重複值之比較 71
表目錄
表一 財務報表問題議題之文獻回顧 7
表二 差分演化法之文獻回顧 11
表三 支援向量機之文獻回顧 14
表四 SVM+Prototypes之文獻回顧 16
表五 Fuzzy C-means之文獻回顧 18
表六 自我組織映射之文獻回顧 20
表七 階層式分群演算法之優缺點 26
表八 基因演算法編碼方式 39
表九 財務比例 59
表十 支援向量機預測準確率 65
表十一 研究結果:準確率 66
表十二 研究結果:覆蓋率 66
表十三 研究結果:準確率加覆蓋率 67
表十四 研究結果:規則數、運算時間 68
表十五 規則表示 69

林育中.(2002). 看他們怎麼 ”烹調帳簿”. 茂德科技股份有限公司- 產業分析專欄http://www.promos.com.tw/website/chinese/industrylist.jsp?id=1029829831253
林嬋娟, 張婷茹. (2006). 財務報導舞弊之研究研究成果報告(精簡版) 行政院國家科學委員會專題研究計畫, 1-8.
林豐澤. (2005). 演化式計算下篇:基因演算法以及三種應用實例. 智慧科技與應用統計學報 34(1), 29-56.
張珂偉. (2005). 企業舞弊的相關博弈分析和治理探討. 常州紡織服裝職業技術學院監察審計處. http://big5.eastday.com:82/gate/big5/sjj.eastday.com/node2/node9/node32/ula7139.html
游輝城, 江向才. (2007). 高階管理團隊異動與財務報表重編之研究. 逢甲大學會計學系碩士班碩士論文 1-52.
劉仁嘉, 李錫智. (2009). 應用於文件分類的自建構式模糊特徵擷取法. 國立中山大學電機工程學系碩士論文, 1-75.
陳慶瀚. (2002). 類神經網路 Self-Organizing Map Neural Network 義守大學電機系, 1-13.
詹智強, 黃志雄. (2003). 應用資料採礦分析線上拍賣市場之模式. 朝陽科技大學工業工程與管理系碩士論文, 50-62.
Agrawal, A., & Jaffe, J. F. (1993). Mangement Turnover and Governance Changes Following the Revelation of Fraud. Journal of Law and Economics, 36, 309-342.
Aguado, D., Montoya, T., Borras, L., Seco, A., & Ferrer, J. (2008). Using SOM and PCA for analysing and interpreting data from a P-removal SBR. Engineering Applications of Artificial Intelligence, 21, 919-930.
Apparao, G., Singh, P. A., Rao, G. S., Bhavani, B. L., & Rajani, D. (2009). Financial Statement Fraud Detection by Data Mining. Advanced Networking and Applications, 1(3), 159-163.
Babu, B. V., & Munawar, S. A. (2007). Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chemical Engineering Science, 62, 3720-3739.
Bai, B., Yen, J., & Yang, X. (2008). False Financial Statements: Characteristics of China'S listed Companies and Cart Detecting Approach. International Journal of Information Technology & Decision Making, 7(2), 339-359.
Baker, J. E. (1985). Reducing bias and inefficiency in the selection algorithm. In Proc. 2nd Int. Conf. Genetic Algorithm, 14-21.
Barakat, N., & Bradley, A. P. (2010). Rule extraction from support vector machines: A review. Neurocomputing, 74, 179-190.
Barakat, N., & Diederich, J. (2006). Eclectic Rule-Extraction from Support Vector Machines. World Academy of Science, Engineering and Technology, 17, 331-334.
Barakat, N. H., & Bradley, A. P. (2007). Rule Extraction from Support Vector Machines: A Sequential Covering Approach. IEEE Transactions on Knowledge and Data Engineering, 19(6), 729-741.
Beasley, M. S. (1996). An Empirical Analysis of the Relation Between the Board of Director Composition and Financial Statement Fraud. The Accounting Review, 71(4), 443-463.
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press.
Brest, J., Zamuda, A., Fister, I., Boˇskovi´, B., & Mauˇcec, M. S. (2011). Constrained Real-Parameter Optimization using a Differential Evolution Algorithm. IEEE, 1-8.
Brouwer, R. K., & Groenwold, A. (2010). Modified fuzzy c-means for ordinal valued attributes with particle swarm for optimization. Fuzzy Sets and Systems, 161, 1774-1789.
Budayan, C., Dikmen, I., & Birgonul, M. T. (2009). Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy C-means method for strategic grouping. Expert Systems with Applications, 36, 11772-11781.
Cai, W., Chen, S., & Zhang, D. (2007). Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition Letters, 40, 825-838.
Cai, Y. D., Liu, X. J., Xu, X. B., & Chou, K. C. (2002). Support vector machines for predicting the specificity of GalNAc-transferase. Peptides, 23, 205-208.
Cao, L. (2003). Support vector machines experts for time series forecasting. Neurocomputing, 51, 321-339.
Chen, C. S., Cheng, M. Y., & Wu, Y. W. (2012). Seismic assessment of school buildings in Taiwan using the evolutionary support vector machine inference system. Expert Systems with Applications, 39, 4102-4110.
Chen, H. J., Huang, S. Y., & Kuo, C. L. (2009). Using the artificial neural network to predict fraud litigation: Some empirical evidence from emerging markets. Expert Systems with Applications, 1478-1484.
Chen, S. T., Yu, P. S., & Tang, Y. H. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385, 13-22.
Chen, T. (2007). Incorporating fuzzy c-means and a back-propagation network ensemble to job completion time prediction in a semiconductor fabrication factory. Fuzzy Sets and Systems, 158, 2153-2168.
Chen, Y., Wang, G., & Dong, S. (2003). Learning with progressive transductive support vector machine. Pattern Recognition Letters, 24, 1845-1855.
Chiou, J. P., Chang, C. F., & Su, C. T. (2005). Variable Scaling Hybrid Differential Evolution for Solving Network Reconfiguration of Distribution Systems. IEEE Transactions on Power Systems, 20(2), 668-674.
Christmann, A., & Hable, R. (2012). Consistency of support vector machines using additive kernels for additive models. Computational Statistics and Data Analysis, 56, 845-873.
Chu, C. H., Yue, D., Wu, X., Wang, Y., & Li, Y. (2007). A Review of Data Mining-based Financial Fraud Detection Research. IEEE, 5519-5522.
Coelho, L. D. S., Bora, C. T., & Lebensztajn, L. (2012). A Chaotic Approach of Differential Evolution Optimization Applied to Loudspeaker Design Problem. IEEE Transactions on Magnetics, 48(2), 751-754.
Cruz, I. L. L., Willigenburg, L. G. V., & Straten, G. V. (2003). Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing, 3, 97-122.
D.Martens, Baesens, B., Gestel, T. V., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 1-11.
Drucker, H., Wu, D., & Vapnik, V. N. (1999). Support Vector Machines for Spam Categorization. IEEE, 1-7.
Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software modules using support vector machines. The Journal of Systems and Software, 81, 649-660.
Fanning, K., & Cogger, K. O. (1998). Neural Network Detection of Management Fraud Using Published Financial Data. International Journal of Intelligent Systems in Accounting, Finance & Management, 7(1), 21-24.
Fanning, K., Cogger, K. O., & Srivastava, R. (1995). Detection of Management Fraud: A Neural Network Approach. IEEE, 220-223.
Fernandez, V. (2007). Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry. Resources Policy, 32, 80-89.
Fich, E. M., & Shivdasani, A. (2007). Financial fraud, director reputation, and shareholder wealth. Journal of Financial Economics, 86, 306-336.
Fister, I., & Brest, J. (2011). Using Differential Evolution for the Graph Coloring. IEEE, 1-7.
Furukawa, T. (2009). SOM of SOMs. Neural Networks, 22, 463-478.
Ghouila, A., Yahia, S. B., Malouche, D., Jmel, H., Laouini, D., Guerfali, F. Z., & Abdelhak, S. (2009). Application of Multi-SOM clustering approach to macrophage gene expression analysis. Infection, Genetics and Evolution, 9, 328-336.
Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. Decision Support Systems, 50, 595-601.
Goel, S., Gangolly, J., Faerman, S. R., & Uzuner, O. (2010). Can Linguistic Predictors Detect Fraudulent Financial Filings? Journal of emerging technologies in accounting, 7, 25-46.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.
Grekousis, G., & Thomas, H. (2012). Comparison of two fuzzy algorithms in geodemographic segmentation analysis: The Fuzzy C-Means and GustafsoneKessel methods. Applied Geography, 34, 125-136.
Hansen, J. V., McDonald, J. B., Messier, W. F., & Bell, T. B. (1996). A Generalized Qualitative-response Model and the Analysis of Management Fraud Management Science, 42(7), 1022-1032.
He, X., Zhang, Q., Sun, N., & Dong, Y. (2009). Feature selection with discrete binary differential evolution. IEEE, 327-330.
Hicks, C. (2006). A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry. Int. J. Production Economics, 104, 598-614.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Annarbor, Michigan: The University of Michigan Press.
Huang, Z., Chen, H., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, 37, 543-558.
Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., & Felix, W. F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50, 585-594.
Hung, W. L., Yang, M. S., & Chen, D. H. (2008). Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters, 29, 1317-1325.
Hylas, R. E., & Ashton, R. H. (1982). Audit Detection of Financial Statement Errors. The Accounting Review, 57(4), 751-765.
Iliadis, L. S., Vangeloudh, M., & Spartalis, S. (2010). An intelligent system employing an enhanced fuzzy c-means clustering model: Application in the case of forest fires. Computers and Electronics in Agriculture, 70, 276-284.
Joachims, T. (1998). Text Categorization with Support Vector Machines Learning with Many Relevant Features. European Conference on Machine Learning (ECML), 1-6.
Johnson, V. E., Khurana, I. K., & Reynolds, J. K. (2002). Audit-Firm Tenure and the Quality of Financial Reports. Contemporary Accounting Research, 19(4), 637-660.
Küçükdeniz, T., Baray, A., Ecerkale, K., & Esnaf, S. (2012). Integrated use of fuzzy c-means and convex programming for capacitated multi-facility location problem. Expert Systems with Applications, 39, 4306-4314.
Kannan, S., Slochanal, S. M. R., & Padhy, N. P. (2005). Application and Comparison of Metaheuristic Techniques to Generation Expansion Planning Problem. IEEE, 20(1), 446-475.
Khushaba, R. N., Ani, A. A., & Jumaily, A. A. (2008). Differential Evolution based Feature Subset Selection. IEEE, 1-4.
Khushaba, R. N., Ani, A. A., & Jumaily, A. A. (2011). Feature subset selection using differential evolution and a statistical repair mechanism. Expert Systems with Applications, 38, 11515-11526.
Kiang, M. Y., Fisher, D. M., Chen, J. C. V., Fisher, S. A., & Chi, R. T. (2009). The application of SOM as a decision support tool to identify AACSB peer schools. Decision Support Systems, 47, 51-59.
Kinney, William, McDaniel, & Linda. (1989). Characteristics of firms correcting previously reported quarterly earnings. Journal of Accounting and Economics, 11, 71-93.
Kirkos, E., Spathis, C., & Manolopoulos, Y. (2005). Detection of Fraudulent Financial Statements through the use of Data Mining Technique. 2nd International Conference on Enterprise Systems and Accounting 1-16.
Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data Mining techniques for the detection of fraudulent financial statements. Expert Systems with Applications, 995-1003.
Koh, A. (2009). An Adaptive Differential Evolution Algorithm Applied to Highway Network Capacity Optimization. Applications of Soft Computing, 221-220.
Kohonen, T. (1990). The Self-Organizing Map. IEEE, 7(89), 1464-1480.
Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006a). Forecasting Fraudulent Financial Statements using Data Mining International Journal of Computational Intelligence, 104-110.
Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006b). Predicting Fraudulent Financial Statements with Machine Learning Techniques. Springer-Verlag Berlin Heidelberg, 3955, 538-542.
Lafferty, J., & Lebanon, G. (2005). Diffusion Kernels on Statistical Manifolds. Journal of Machine Learning Research, 6, 129-163.
Lee, M., & Pedrycz, W. (2009). The fuzzy C-means algorithm with fuzzy P-mode prototypes for clustering objects having mixed features. Fuzzy Sets and Systems, 160, 3590-3600.
Liao, T. W. (2010). Two hybrid differential evolution algorithms for engineering design optimization. Applied Soft Computing, 10, 1188-1199.
Lin, G. F., & Wu, M. C. (2007). A SOM-based approach to estimating design hyetographs of ungauged sites. Journal of Hydrology, 339, 216-226.
Liu, J., & Xu, M. (2008). Kernelized fuzzy attribute C-means clustering algorithm. Fuzzy Sets and Systems, 159, 2428-2445.
Manjula, B., Sarma, S. S. V. N., Govardhan, A., & Naik, R. L. (2011). DFFS: Detecting Fraud in Finance Sector. Advanced Engineering Sciences and Technologies, 9(2), 178-182.
Martens, D., Baesens, B., Gestel, T. V., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183, 1466-1476.
Mingoti, S. A., & Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means,K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174, 1742-1759.
Núñez, H., Angulo, C., & Català, A. (2002a). Rule extraction from support vector machines. European Symposium on Artificial Neural Networks, 107-112.
Núñez, H., Angulo, C., & Català, A. (2002b). Support Vector Machines with Symbolic Interpretation. IEEE, 1-6.
Núñez, H., Angulo, C., & Catala, A. (2003). Hybrid Architecture Based on Support Vector Machines Springer-Verlag Berlin Heidelberg, 646-653.
N´u˜nez, H., Angulo, C., & Catal`, A. (2008). Rule Extraction Based on Support and Prototype Vectors. Studies in Computational Intelligence, 80, 109-134.
N´u˜nez, H., Angulo, C., & Catal`a, A. (2005). Rule Based Learning Systems for Support Vector Machines. Kluwer Academic Publishers, 1-20.
Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 559-563.
Noktehdan, A., Karimi, B., & Kashan, A. H. (2010). A differential evolution algorithm for the manufacturing cell formation problem using group based operators. Expert Systems with Applications, 37, 4822-4829.
Obeua. (1995). Using Financial Statement Data to Identify Factor Associated with Fraudulent Financial Reporting. Journal of Applied Business Research, 11(3), 38-46.
Ortells, L. E., & Wernick, M. N. (2011). Spatial Fuzzy Clustering with Simultaneous Estimation of Markov Random Field Parameters and Class. Medical Imaging Research Center, Illinois Institute of Technology Telecom BCN, Polytechnic University of Catalonia, 31-34.
Osuna, E., Freund, R., & Girosit, F. (1997). Training Support Vector Machines: an Application to Face Detection. IEEE(130-136).
Pan, Q. K., Suganthan, P. N., Wang, L., Gao, L., & Mallipeddi, R. (2011). A differential evolution algorithm with self-adapting strategy and control parameters. Computers & Operations Research, 38, 394-408.
Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2007). A Discrete Differential Evolution Algorithm for the Permutation Flowshop Scheduling Problem. Computers & Industrial Engineering, 126-133.
Pan, Q. K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Computers & Operations Research, 36(2498-2511).
Park, D. C. (2009). Classification of audio signals using Fuzzy c-Means with divergence-based Kernel. Pattern Recognition Letters, 30, 794-798.
Phillips, W. E., Velthuizen, R. P., Phuphanichl, S., Clarke, L. P., & Silbiger, M. L. (1995). Application of Fuzzy C-means Segmentation Technique for Tissue Differentiation in MR Images of A Hemorrhagic Glioblastoma Multiforme. Magnetic Resonance Imaging, , 13(2), 277-290.
Pitiranggon, P., Benjathepanun, N., Banditvilai, S., & Boonjing, V. (2010). Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals. World Academy of Science, Engineering and Technology, 68, 239-246.
Qian, W., & li, A. (2008). Adaptive differential evolution algorithm for multiobjective optimization problems. Applied Mathematics and Computation, 201, 431-440.
Ravisankar, P., Ravi, V., Rao, G. R., & Bose, I. (2011). Detection of financial statement fraud and feature selection using data mining techniques. Decision Support Systems, 50, 491-500.
Reddy, M. J., & Kumar, D. N. (2007). Multiobjective Differential Evolution with Application to Reservoir System Optimization. Computing in Civil Engineering, 136-146.
Renner, G., & Eka´rt, A. (2003). Genetic algorithms in computer aided design. Computer-Aided Design, 35, 709-726.
S"anchez, V. D. (2003). Advanced support vector machines and kernel methods. Neurocomputing, 55, 5-20.
Santarelli, S., Yu, T. L., Goldberg, D. E., Altshuler, E., Donnell, T., Southall, H., & Mailloux, R. (2006). Military antenna design using simple and competent genetic algorithms. Mathematical and Computer Modelling, 43, 990-1022.
Spathis, C. T. (2002). Detecting false financial statements using published data: some evidence from Greece. Managerial Auditing Journal, 17(4), 179-191.
Storn, R. (1996). On the Usage of Differential Evolution for Function Optimization. IEEE, 519-523.
Storn, R. (1999). System Design by Constraint Adaptation and Differential Evolution. IEEE, 22-34.
Storn, R., & Price, K. (1995). Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, 1-12.
Subasi, A., & Gursoy, M. I. (2010). EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications, 37, 8659-8666.
Summers, S. L., & Sweeney, J. T. (1998). Fraudulently Misstated Financial Statements and Insider Trading:An Empirical Analysis The Accounting Review, 73, 131-146.
Tan, K. S., & Isa, N. A. M. (2011). Color image segmentation using histogram thresholding – Fuzzy C-means hybrid approach. Pattern Recognition Letters, 44, 1-15.
Tang, H., Xue, S., & Fan, C. (2008). Differential evolution strategy for structural system identification. Computers and Structures, 86, 2004-2012.
Tay, F. E. H., & Cao, L. J. (2002). Modified support vector machines in financial time series forecasting. Neurocomputing, 48, 847-861.
Ting, H., Jingling, S., & Meiyan, L. (2011). Quantitative identification of illicit drugs by using SOM neural networks. Measurement, 44, 391-398.
Tjhai, G. C., Furnell, S. M., Papadaki, M., & Clarke, N. L. (2010). A preliminary two-stage alarm correlation and filtering system using SOM neural network and K-means algorithm. computers & security, 29, 712-723.
Tokunaga, K., & Furukawa, T. (2009). Modular network SOM. Neural Networks, 22, 82-90.
Tripathi, S., Srinivas, V. V., & Nanjundiah, R. S. (2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330, 621-640.
Unem, R. K., & Vadstrup, P. (2003). Parameter Identification of Induction Motors Using Differential Evolution IEEE, 790-796.
Vázquez-Sánchez, E., Gómez-Gil, J., Gamazo-Real, J. C., & Díez-Higuera, J. F. (2012). A New Method for Sensorless Estimation of the Speed and Position in Brushed DC Motors Using Support Vector Machines. IEEE Transactions on Industrial Electronics, 59(3), 1397-1408.
Vapnik, V., & Cortes, C. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.
Wang, Y., Li, B., & Weise, T. (2010). Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems. Information Sciences, 180, 2405-2420.
Wirth, H., Bergen, M., Murugaiyan, J., Rösler, U., Stokowy, T., & Binder, H. (2012). MALDI-typing of infectious algae of the genus Prototheca using SOM portraits. Journal of Microbiological Methods, 88, 83-97.
Wu, Y., Lu, J., & Sun, Y. (2008). An Improved Differential Evolution for Optimization of Chemical Process. Chinese Journal of Chemical Engineering, 16(2), 228-234.
Xianwen, Z., & Jingfu, L. (2011). Image recognition method based on artificial life and support vector machine. Energy Procedia 11, 1255-1259.
Yadav, V., & Srinivasan, D. (2011). A SOM-based hybrid linear-neural model for short-term load forecasting. Neurocomputing, 74, 2874-2885.
Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50, 570-575.
Zou, D., Liu, H., Gao, L., & Li, S. (2011). An improved differential evolution algorithm for the task assignment problem. Engineering Applications of Artificial Intelligence, 24, 616-624.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top