跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐星豪
研究生(外文):Hsing-hao Hsu
論文名稱:希爾伯特黃轉換在股票市場崩盤預測之應用
論文名稱(外文):An Application of Hilbert-Huang Transform: Stock Market Crash Prediction
指導教授:馬黛馬黛引用關係
指導教授(外文):MaTai
學位類別:碩士
校院名稱:國立中山大學
系所名稱:財務管理學系研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:66
中文關鍵詞:希爾伯特-黃轉換類神經網路EEMD預測股市崩盤
外文關鍵詞:EEMDHilbert-Huang Transformneural networkstock market crashprediction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:663
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用黃鄂博士於1998年提出的Ensemble Empirical Mode Decomposition (EEMD),將拆解完的本質模態函數(IMF)以及剩餘的趨勢項帶入倒傳遞類神經網路中,訓練類神經網路並對樣本外資料進行預測。經驗解構法是希爾伯特-黃轉換之中的技術,可以將時間序列資料拆解成數個本質模態函數和一個殘餘項,此方法被廣泛應用在各個領域的訊號分析當中。本研究使用此模型的重點在於,僅僅使用歷史價格這個變數即可進行股市崩盤的預測,不需要受限於各種經濟變數取得的問題,對研究人員來說,提供相當大的便利性。
本文對含括台、美的七個國際指數進行實證,實證結果顯示此模型對out-of-sample的崩盤具有一定程度的預測能力。當我們看全樣本的預測準確性,最低的是道瓊工業指數的70.8%,準確性最高的是澳洲股票指數的99.1%;若我們觀察的是崩盤期間的預測,準確性最低的是香港的33%,最高的是新加坡、英國跟澳洲的股價指數,這三者的正確性都是100%。可以發現此模型對崩盤期間的預測準確度波動較大,存在完全正確(100%)的情況但也存在非常低(33%)。除此之外,我們與Zouaoui, Nouyrigat, and Beer (2011)提出的羅吉斯回歸比較預測準確性,此模型除了總體變數外也加入投資人情緒變數在當中,結果顯示本文模型的預測能力再兩種情況都領先羅吉斯回歸,特別是對崩盤期間的預測,本研究的正確性58.3%是羅吉斯回歸25%的2倍。
最後,本文嘗試分析本質模態函數背後代表的經濟意義,因為EEMD的拆解基礎是物理特性,因此我們根據各個IMF的圖形以及在類神經網路裡佔的權重分類,將其分為高、中、低三組數列,結果顯示低頻資料和總體經濟變數間的關係非常顯著而且判定係數超過90%,中頻資料則是跟投資人情緒變數有顯著的正相關。
In this paper, we forecast stock market crashes by innovative EEMD-based neural network approach with stock market indices. The concept of EMD is to decompose nonlinear and nonstationary time series signal for obtaining instantaneous frequency data. In order to predict stock crashes for early-warning proposes, this study uses Ensemble Empirical Mode Decomposition to decompose historical prices into several frequency component and a residual trend, and then take these components as inputs in neural network.
The result of our research shows that the prediction model is significant by better forecasting performances. In seven sample countries, if we take a look on the forecasting result of the out of sample that including crisis periods and non-crisis periods, the lowest accuracy is 70.8% for Dow Jones Average Industrial and the highest is 99.1% of Australia Index. If we only take a look of the forecasting result of the crisis period alone, the lowest accuracy is 33% for Hang Seng Index, and the highest is 100% for Singapore STI Index, UK FTSE All-Share Index, and Australia ASX Index. Compare the forecasting performance with a logit model, the forecasting accuracy of the logit model in crisis period is much lower than the EEMD-based neural network approach. Finally, we explain the factors explaining the various price components, and found a significant relationship between low frequency price component and microeconomic variables, while mid-frequency components of IMFs can be explained by investor sentiment.
摘要 I
ABSTRACT II
I. INTRODUCTION 1
1. LITERATURE REVIEW 7
2.1 Econometrics 8
2.2 Operation research 9
2.3 Log-Periodic Power Law, LPPL 11
3. DATA AND METHODOLOGY 14
3.1 Data description 16
3.2 Identification of stock market crash 18
3.3 Ensemble Empirical Mode Decomposition 20
3.4 Artificial Neural Network 24
3.5 EEMD-based multiscale neural network 30
3.6 The logit model 32
4. EMPIRICAL RESULT 33
4.1 Stock market crisis 35
4.2 The decompositions of each stock market indices 39
4.3 Forecasting results 41
4.4 Comparison with other method 46
4.5 Analysis of IMFs 51
5. CONCLUSION 55
REFERENCE 58
Al-Anaswah, N., and Wilfling, B. (2011). Identification of speculative bubbles using state-space models with Markov-switching. Journal of Banking &; Finance, 35(5), 1073-1086.
Asako, K., and Liu, Z. (2013). A statistical model of speculative bubbles, with applications to the stock markets of the United States, Japan, and China. Journal of Banking &; Finance, 37(7), 2639-2651.
Baker, M., and Wurgler, J. (2007). Investor sentiment in the stock market.
Bell, T. B. (1997). Neural nets or the logit model? A comparison of each model’s ability to predict commercial bank failures. Intelligent Systems in Accounting, Finance and Management, 6(3), 249-264.
Boyacioglu, M. A., Kara, Y., and Baykan, Ö. K. (2009). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. Expert systems with Applications, 36(2), 3355-3366.
Bussiere, M., and Fratzscher, M. (2006). Towards a new early warning system of financial crises. journal of International Money and Finance, 25(6), 953-973.
Celik, A. E., and Karatepe, Y. (2007). Evaluating and forecasting banking crises through neural network models: An application for Turkish banking sector. Expert systems with Applications, 33(4), 809-815.
Cerqueti, R., and Costantini, M. (2011). Testing for rational bubbles in the presence of structural breaks: Evidence from nonstationary panels. Journal of Banking &; Finance, 35(10), 2598-2605.
Cutler, D. M., Poterba, J. M., and Summers, L. H. (1989). What moves stock prices? The Journal of Portfolio Management, 15(3), 4-12.
Gutierrez, L. (2011). Bootstrapping asset price bubbles. Economic Modelling, 28(6), 2488-2493.
Hong, H., and Stein, J. C. (2003). Differences of opinion, short‐sales constraints, and market crashes. Review of financial studies, 16(2), 487-525.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995.
Johansen, A., Ledoit, O., and Sornette, D. (2000). Crashes as critical points. International Journal of Theoretical and Applied Finance, 3(02), 219-255.
Kumar, M., Moorthy, U., and Perraudin, W. (2003). Predicting emerging market currency crashes. Journal of Empirical Finance, 10(4), 427-454.
Niemira, M. P., and Saaty, T. L. (2004). An analytic network process model for financial-crisis forecasting. International Journal of Forecasting, 20(4), 573-587.
Patel, S. A., and Sarkar, A. (1998). Crises in developed and emerging stock markets. Financial Analysts Journal, 54(6), 50-61.
Phillips, P. C., Wu, Y., and Yu, J. (2011). EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?*. International economic review, 52(1), 201-226.
Phillips, P. C., and Yu, J. (2010). Dating the timeline of financial bubbles during the subprime crisis.
Rangel, J. G. (2011). Macroeconomic news, announcements, and stock market jump intensity dynamics. Journal of Banking &; Finance, 35(5), 1263-1276.
Sollis, R. (2006). Testing for bubbles: an application of tests for change in persistence. Applied Financial Economics, 16(6), 491-498.
Swicegood, P., and Clark, J. A. (2001). Off-site monitoring systems for predicting bank underperformance: A comparison of neural networks, discriminant analysis, and professional human judgment. International Journal of Intelligent Systems in Accounting, Finance &; Management, 10(3), 169-186.
Tam, K. Y. (1991). Neural network models and the prediction of bank bankruptcy. Omega, 19(5), 429-445.
Tam, K. Y., and Kiang, M. (1990). Predicting bank failures: a neural network approach. Applied Artificial Intelligence an International Journal, 4(4), 265-282.
West, K. D. (1986). A specification test for speculative bubbles.
Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.
Yu, L., Wang, S., Lai, K. K., and Wen, F. (2010). A multiscale neural network learning paradigm for financial crisis forecasting. Neurocomputing, 73(4), 716-725.
Zhao, H., Sinha, A. P., and Ge, W. (2009). Effects of feature construction on classification performance: An empirical study in bank failure prediction. Expert systems with Applications, 36(2), 2633-2644.
Zouaoui, M., Nouyrigat, G., and Beer, F. (2011). How does investor sentiment affect stock market crises? Evidence from panel data. Financial Review, 46(4), 723-747.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊