跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 15:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂估麗
研究生(外文):Dwi Yuli Rakhmawati
論文名稱:基於非對稱公差下考慮量測誤差於製程能力評估之研究
論文名稱(外文):Assessing Process Capability for Asymmetric Tolerances with Gauge Measurement Errors
指導教授:吳建瑋吳建瑋引用關係楊朝龍楊朝龍引用關係
指導教授(外文):Chao-Lung YangWu-Chien Wei
口試委員:吳建瑋楊朝龍
口試委員(外文):Chao-Lung YangWu-Chien Wei
口試日期:2015-01-09
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:183
中文關鍵詞:涵蓋率非對稱公差量測誤差下信賴界線製成能力評估
外文關鍵詞:Asymmetric tolerancescoverage rategauge measurement errorslower confidence limitprocess capability assessment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:495
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:1
量測誤差(GME)由於能夠更準確地反映出製程能力的評估與衡量,因此在許多生產型工業裡扮演著重要的腳色。近年來,大量探討量測誤差於製程能力評估的研究僅針對於對稱公差的情形。事實上,在現實的生產案例中也會面臨非對稱公差的製程能力評估。為此,本文透過廣義信賴區間法(GCI)、抽樣分配法(SD)以及修正型抽樣分配法(MSD)來分析在非對稱公差的條件下量測誤差於製程能力評估的影響。此外,本文透過一系列各種不同參數條件下的模擬分析來比較其方法的績效以做出進一步的討論。最後,透過比較涵蓋率(CR)與平均下信賴界限(AVLCB),本文所提出的方法顯示其良好的適用性來應用在非對稱公差的條件下考慮量測誤差於製程能力評估。此外,本文最後亦透過一個非對稱的案例來說明如何在真實環境下應用所提出的方法來更精確的評估製程能力。
Gauge measurement errors (GME) began to play an important role in many types of manufacturing industries because it would affect the estimation and assessment of the process capability. In recent years, the issue of process capability assessment in the presence of GME for cases with symmetric tolerances was investigated enthusiastically. However, even processes with symmetric tolerances are very common in practical situations, cases of asymmetric tolerances also occur in manufacturing industries. In this dissertation, generalized confidence interval (GCI), sampling distribution (SD), and modified sampling distribution (MSD) approaches are applied to assess the performances of processes with asymmetric tolerances in the presence of the GME. To examine and compare the performance of the proposed approaches, an exhaustive simulation under various conditions was conducted. The conclusion is that the proposed approaches appear quite satisfactorily for assessing process performance with asymmetric tolerances in the presence of GME in terms of the Coverage Rate (CR) and the Average Value of Lower Confidence Bound (AVLCB). Examples are presented to illustrate the applicability of the proposed approaches in real factory condition.
TABLE OF CONTENTS
摘要 ii
Abstract iii
Acknowledgements iv
Table of Contents v
Table Of Symbols vii
Content of Figures viii
Content of Tables xviii
Chapter 1. Introduction 1
1.1. Research Background 1
1.2. Research Motivations 2
1.3. Research Objectives 3
1.4. Research Organization 3
Chapter 2. Literature Review 7
2.1. Process Capability Indices 7
2.1.1. Process Capability Indices for Symmetric Case 7
2.1.2. Process Capability Indices for Asymmetric Case 9
2.2. Gauge Measurement Errors 19
Chapter 3. Methodology 23
3.1. Generalized Confidence Interval (GCI) Approach with Gauge Measurement Errors 24
3.1.1. GCI approach with GME for Index 25
3.1.2. GCI for Index 27
3.2. Sampling Distribution (SD) and Modified Sampling Distribution (MDS) Approaches 31
3.2.1. (SD/MSD) for Index in the presence of GME 31
3.2.2. (SD/ MSD) for Index in the presence of GME 34
Chapter 4. Performance Comparisons 40
4.1. Simulation Layout Setting 40
4.2. Simulation Results Analysis for Index 49
4.2.1. Coverage Rate (CR) Analysis 49
4.2.2. Average Value of Lower Confidence Bound (AVLCB) Analysis 62
4.3. Simulation Results Analysis of Index 71
4.3.1. Coverage Rate (CR) Analysis 72
4.3.2. Average Value of Lower Confidence Bound (AVLCB) Analysis 83
Chapter 5. Application Examples 94
Chapter 6. Conclusions and Future Works 102
References 105
Appendix 109
Biography 232
REFERENCES
[1]Boyles, R. A. (1994). Process Capability with asymmetric tolerances. Communications in Statistics: Simulation & Computation, 23(3), 615-635.
[2]Burdick, R. K., Borror, C. M. and Montgomery, D. C. (2003). A review of methods for measurement systems capability analysis. Journal of Quality Technology, 35(4), 342-354.
[3]Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of Quality Technology, 20(3), 162-175.
[4]Chang, Y. C. and Wu, C. W. (2008). Assessing process capability based on the lower confidence bound of Cpk for asymmetric tolerances. European Journal of Operational Research, 190(1), 205-227.
[5]Chang, Y. C. (2009). Interval estimation of capability index for manufacturing processes with asymmetric tolerances. Computers and Industrial Engineering, 56, 312-322.
[6]Chen, K. S. (1998). Incapability index with asymmetric tolerances. Statistica Sinica, 8, 253-262.
[7]Daniels L., Edgar B., Burdick R. K. and Hubele N. F. (2005). Using confidence intervals to compare process capability indices. Quality Engineering, 17: 23-32.
[8]Franklin, L. A., and Wasserman, G. S. (1992). Bootstrap lower confidence limits for capability indices. Journal of Quality Technology, 24, 196-210.
[9]Hsu, B. M., Shu, M. H., & Pearn, W. L. (2007). Measuring process capability based on Cpmk with gauge measurement errors. Quality and Reliability Engineering International, 23(5), 597-614.
[10]Hsu, B. M., Wu, C. W. and Shu, M. H. (2008). Generalized confidence intervals for the process capability index . Metrika, 68(1), 65-82.
[11]Juran, J.M. (1974). Quality Control Handbook, 3rd ed. McGraw-Hill, New Work, USA.
[12]Kane, V.E. (1986). Process capability indices. Journal of Quality Technology, 18, 41-52.
[13]Kotz, S., & Johnson, N. L. (1993). Process capability indices. CRC Press.
[14]Kotz, S., and Lovelace, C. (1998). Process Capability Indices in Theory and Practice. Arnold, London, U.K.
[15]Kurian, K. M., Mathew, T. and Sebastian, G. (2008). Generalized confidence intervals for process capability indices in the one-way random model. Metrika, 67(1), 83-92.
[16]Kushler, R. H., and Hurley, P. (1992). Confidence bounds for capability indices. Journal of Quality Technology, 24, 188-195.
[17]Lin, T. Y., Wu, C. W., Chen, J. C. and Chiou, Y. H. (2011). Applying Bayesian approach to assess process capability for asymmetric tolerances based on Cpmk" index. Applied Mathematical Modelling, 35(9), 4473-4489.
[18]Mathew, T., Webb, D. W. (2005). Generalized p values and confidence intervals for variance components: Applications to army testing and evaluation. Technometrics, 47, 312-322.
[19]Mathew, T., Sebastian, G., and Kurian, K. M. (2007). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23, 471-481.
[20]Montgomery, D. C. (2009), Introduction to Statistical Quality Control (6th edition). John Wiley and Sons, New York.
[21]Montgomery, D. C., and Runger, G. C. (1993). Gauge capability and design experiments. part I: basic methods. Quality Engineering, 6, 115-135.
[22]Pearn, W. L, Kotz, S., and Johnson, N. (1992). Distribution and inferential properties of process capability indices. Journal of Quality Technology, 24, 216-231.
[23]Pearn, W. L and Chen, K. S., (1998). New generalization of process capability index . Journal of Applied Statistics, 25(6), 801-810.
[24]Pearn, W. L. and Liao, M. Y. (2005). Measuring process capability based on Cpk with gauge measurement errors. Microelectronics Reliability, 45, 739-751.
[25]Pearn, W. L, Shu, M. H. and Hsu, B. M. (2005). Testing process capability based on Cpm in the presence of random measurement errors. Journal of Applied Statistics, 32(10), 1003-1024.
[26]Pearn, W. L., & Kotz, S. (2006). Encyclopedia And Handbook of Process Capability Indices: A Comprehensive Exposition of Quality Control Measures (Series on Quality, Reliability and Engineering Statistics). World Scientific Publishing Co., Inc.
[27]Pearn, W. L., & Liao, M. Y. (2005). Measuring process capability based on Cpk with gauge measurement errors. Microelectronics Reliability, 45(3), 739-751.
[28]Pearn, W. L. and Liao, M. Y. (2006). One sided process capability assessment in the presence of measurement errors. Quality and Reliability Engineering International, 22(7), 771-785.
[29]Rakhmawati, D. Y., Process Capability Assessment for Asymmetric Tolerances with Consideration of Gauge Measurement Errors. Communications in Statistics, 2013.
[30]Rakhmawati, D. Y., Performance Evaluation of Processes with Asymmetric Tolerances in the Presence of Gauge Measurement Errors. Communications in Statistics, 2014.
[31]Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes.
[32]Tian, L. (2005). Inferences on the common coefficient of variation. Statistics in Medicine, 24, 2213-2220.
[33]Vannman, K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics: Theory & Methods, 26, 159-179.
[34]Weerahandi, S. (1993). Generalized confidence intervals. Journal of American Statistical Association, 88, 899-905.
[35]Wu, C. C. and Tang, G. R. (1998). Tolerance designed for products with asymmetric quality losses. International Journal of Production Research, 36(9), 2529-2541.
[36]Wu, C. W., Pearn, W. L. and Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International Journal of Production Economics, 117(2), 338-359.
[37]Wu, C. W. (2011). Using a novel approach to assess process performance in the presence of measurement errors. Journal of Statistical Computation and Simulation, 81, 301-314.
[38]Wu, C. W. (2012). A Bayesian approach for measuring process performance with asymmetric tolerances. European Journal of Industrial Engineering, 6(3), 347-368.
[39]Wu, C. W., Liao, M. Y. and Chen, J. C. (2012). An improved approach for constructing lower confidence bound on process yield. European Journal of Industrial Engineering, 6(3), 369-390.
[40]Wu, C. W. (2013). Process performance evaluation based on Taguchi capability index with the consideration of measurement errors. International Journal of Systems Science, 44(8), 1386-1399.
[41]Wu, C. W., Liao, M. Y. and Yang, T. T. (2013). Efficient methods for comparing two process yields – strategies on supplier selection. International Journal of Production Research, 51(5), 1587-1602.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top