跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/11/28 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳孟鴻
研究生(外文):Meng-Hung Wu
論文名稱:台灣減碳策略下電力業之健康共同效益評估
論文名稱(外文):Health Co-benefits of Power Sector under Taiwan''s Carbon Reduction Strategies
指導教授:馬鴻文馬鴻文引用關係
指導教授(外文):Hwong-Wen Ma
口試委員:李公哲洪明龍
口試委員(外文):Kung-Cheh LiMing-lung Hung
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:127
中文關鍵詞:電力業減碳策略傳統空氣汙染物健康共同效益
外文關鍵詞:Power sectorcarbon reduction strategiesConventional air pollutantsHealth co-benefits
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近十餘年來,溫室氣體(Green House Gases, GHGs)排放所造成的全球暖化,衍生出經濟、社會、生態等多方面的環境問題,致使全球對於低碳排放發展策略(Low-Emission Development Strategies, LEDS)的發展方向已經趨於明朗。然而,過去溫室氣體與傳統空氣污染物多被視為兩個領域,單獨被分析或評估對環境造成的衝擊,但若依循減碳、低碳的策略前進,其所發展的技術與政策,不但減少了溫室氣體的排放量,同時也能直接或間接減少其餘空氣污染物的排放量,而致使空氣品質的改善,獲得健康效益。
台灣現有電力發電業的碳排占了整體超過六成的比例,又電力業也是傳統污染物排放的大宗。本研究利用TWIEA模式與AERMOD大氣擴散模型,建立起台灣電力業健康共同效益評估方法,評估當台灣施行現有減碳策略或更積極的策略下,電力需求的改變與發電結構的調整,是否能使電力業溫室氣體排放下降,也一併造成傳統汙染物(SOX、NOX、PM10)排放量改變,其產生的健康共同效益,以縣市別與全國來呈現結果。
結果顯示:若遵行現有的減碳策略,2020年是無法達成電力部門的減碳目標的,並且PM10的排放量會高過於2005年。唯有進行積極減碳的策略,2020年時方能在電力部門達成減碳目標,並讓SOX、NOX、PM10三種傳統汙染物總體排放量皆能下降,進而獲得較高的健康共同效益(相較既有策略提升15.6%)。此外,又因全國總排放量與全國總健康影響並非一定呈現正向關係,故透過縣市層級的健康共同效益評估方法會優於僅用國家層級的解析度。本研究中,若施行更積極的減碳策略,獲得較大實質健康共同效益的城市依序為:大台中市、大高雄市、基隆市、新北市、彰化縣與雲林縣。

關鍵字:電力業,減碳策略、傳統空氣汙染物、健康共同效益


Green House Gases emission has induced global warming, which results in economic, social, ecological and other aspects of environmental problems over the past decades. The direction of Low-Emission Development Strategies then has become clear. However, in the past the issues of greenhouse gases and conventional air pollutants are considered two individual fields to be analyzed concerning the impact on the environment. Following the low-carbon strategy, the development of its technology and policy will not only reduce greenhouse gas emissions, but also can directly or indirectly lower the emissions of conventional air pollutants, improving air quality, and obtaining health benefits.
Taiwan''s current carbon emission from power generation sector accounts for over 60% of the overall emission.Additionally, the power generation sector exhausts a lot of conventional pollutants. This study used TWIEA model and AERMOD atmospheric dispersion model to establish Taiwan''s power sector health co-benefits assessment methods, and assess the existing carbon reduction strategies implemented in Taiwan. The more aggressive strategies in which the demand of electric power and power generation structure changes are evaluated as to whether the CO2 and conventional pollutants (SOX, NOX, PM10) emissions could be lowered. Then, this study analyzes the health co-benefits at urban and national levels.
The results show that under the existing carbon reduction strategies, we are unable to reach the target of carbon reduction in power sector in 2020, and PM10 emissions will be higher than those in 2005. The only way to reach the goal in 2020 and abate SOX, NOX, PM10 emissions is to adopt more aggressive strategies, which will obtain higher health co-benefits (relatively being improved by 15.6%, compare with the existing policy). In addition, the national total emissions and the national total health effects are not necessarily positively related, so using the county-level resolution to assess health co-benefits will be better than just using the national-level resolution. In conclusion, the implementation of more aggressive carbon reduction strategies would lead to higher degree of health co-benefits for cities in order as following: Taichung city, Kaohsiung city, Keelung city, New Taipei City, Changhua County and Yunlin County.

Keywords: Power sector, carbon reduction strategies, Conventional air pollutants, Health co-benefits


摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VIII
1 第一章緒論 1
1.1研究背景與動機 1
1.2研究目的與架構 2
2 第二章文獻回顧 4
2.1溫室氣體與低碳發展歷程簡述 4
2.2共同效益 8
2.2.1溫室氣體與傳統空氣污染物兩之者關聯與共同效益 8
2.2.2健康共同效益與相關研究 12
2.3我國現況 21
2.3.1二氧化排碳排放狀況 21
2.3.2我國電力業現況 28
2.3.3電力業的傳統汙染物排放 35
2.3.4 我國現有減碳策略 39
2.4小結 42
3 第三章研究方法與範疇 43
3.1研究架構與範疇界定 43
3.2未來排碳量與污染物量推估 45
3.2.1 台灣公共政策整合性環境評估模式TWIEA 45
3.2.2減碳情境設定 46
3.2.3 電廠汙染物分配推估 50
3.3大氣擴散模式 54
3.3.1 AERMOD模式簡介 54
3.3.2資料收集與處理 59
3.4健康效益評估方法 61
4 第四章結果與討論 67
4.1未來供電狀況 67
4.2 二氧化碳與污染物排放狀況 70
4.3健康共同效益 76
5 第五章結論與建議 87
5.1結論 87
5.2建議 89
參考文獻 90
附錄1: 2005年各縣市三種汙染物之健康衝擊(CASE數) 96
附錄2: 2020年既定策略下各縣市三種汙染物之健康衝擊(CASE數) 100
附錄3: 2020年積極策略下各縣市三種汙染物之健康衝擊(CASE數) 104
附錄4: 2020年既定策略下與2005年比較之各縣市三種汙染物之健康效益(CASE數) 108
附錄5: 2020年既定策略下與2005年比較之各縣市三種汙染物之健康共同效益(增減比率) 112
附錄6: 2020年積極策略下與2005年比較之各縣市三種汙染物之健康效益(CASE數) 116
附錄7: 2020年積極策略下與2005年比較之各縣市三種汙染物之健康共同效益(增減比率) 120
附錄8: 2020年積極策略下與2020年既定策略比較之各縣市三種汙染物之健康共同效益增幅 124


中文文獻

台灣電力公司,2006,台電公司94年統計年報。
台灣電力公司,2007,台電公司95年統計年報。
台灣電力公司,2012,台電公司100年統計年報。
台灣電力公司,2012,台電公司100年公司年報。
台灣電力公司,2012,台灣電力公司長期電源開發方案(10109案)。
曠永銓、許珮蒨, 2005, AERMOD煙流模式在臺灣地區之應用研究。中興工程,Vol. 88,55-62。
謝宏益, 2007,擴散模式ISC與AERMOD之比較,國立中興大學環境工程研究所碩士論文。
聯合國環境規劃署,2007,全球環境展望4 —旨在發展的環境(http://www.unep.org/geo/GEO4/report/GEO-4_Report_Full_CH.pdf)
經濟部工業局,2010,石化工業政策說明書(初稿)。
經濟部工業局,2010,鋼鐵工業政策說明書(初稿)。
經濟部能源局,2010,能源發展綱領政策說明書(初稿)。
行政院節能減碳委員會,2010,國家節能減碳總計畫。
財團法人中華經濟研究院,2011,台灣溫室氣體減量成本曲線。
王鈺惠,2011,台灣電力部門供給面減碳政策效益評估。國立成功大學資源工程學碩士論文。
行政院經濟建設委員會,2012,中華民國2012年至2060年人口推計。
經濟部能源局,2012,我國燃料燃燒二氧化碳排放統計與分析。
經濟部能源局,2012,中華民國100年能源統計手冊。
邱瀚民,2012,台灣產業環境外部成本分析-以空氣污染物健康衝擊為例。國立台灣大學環工所碩士論文。
鄭高禎,2012,台電慣常火力發電工程發展,水利土木科技資訊,第56 期,7-17。
趙家緯,2013,型塑公共政策生態理性—整合性環境評估模式之發展與應用。國立台灣大學環工所博士論文。

外文文獻

Bickel, P. and Friedrich, R., 2005. Externalitites of Energy – Methodology 2005 Update, European Commission EUR 21951.
Bollen, J., Guay, B., Jamet, S. and Corfee-Morlot, J., 2009. Co-benefits of climate change mitigation policies: literature review and new result, OECD Economic department working papers, No.693.
Bollen, J., van der Zwaan, B., Brink, C. and Eerens, H., 2009. Local air pollution and global climate change: a combined cost- benefit analysis, Resource Energy Economy, Vol.31, 161-181.
Bussolo, M. and O’Connor, D., 2001. Clearing the air in India: the economics of climate policy with ancillary benefits, Responding to Local and Global Environmental Challenges, OECD Development Centre, Paris.
Burtraw, D., Krupnick, A., Palmer, K., Paul, A., Toman, M. and Bloyd, C., 2003. Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector, Journal of Environment and Economy management, Vol.45, 650-673.
Caton, R. and Constable, S., 2000. Clearing the air : a preliminary analysis of air quality co-benefits from reduced greenhouse gas emission in Canada, David Suzuki Foundation.
Chae, Y. and Park, J., 2011. Quantifying costs and benefits of integrated environmental strategies of air quality management and greenhouse gas reduction in the Seoul Metropolitan Area, Energy Policy, Vol. 39, 5296-5308.
Chao, C.W., Ma, H.W. and Heijungs, R., 2013. The Green Economy Mirage ? Examining the Environmental Implications of Low-Carbon Growth Plans in Taiwan, Journal of Industrial Ecology, in Press.
Chao, C.W., Heijungs, R. and Ma, H.W., 2013. Development and Application of Dynamic Hybrid Multi-Region Inventory Analysis for Macro-level Environmental Policy Analysis: A Case Study on Climate Policy in Taiwan, Environmental Science and Technology, Vol. 47, 2512–2519.
Chen, C., Wang, B., Fu, Q., Green, C. and Streets, D.G., 2006. Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study, Energy Policy, Vol. 34, 754-762.
Cifuentes, L., Borja-Aburto, V.H., Gouveia, N., Thurston, G. and Davis, D.L., 2001. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, Sao Paulo, Mexico City, and New York City, Environmental Health Perspectives, Vol. 109, 419-425.
Crawford-Browna ,D., Barker, T., Anger, A. and Dessens, O., 2012. Ozone and PM related health co-benefits of climate change policies in Mexico. Environmental science and policy, Vol. 17, 33-40.
Davis, D.L., Krupnick, A., McGlynn, G., 2000. Ancillary benefits and costs of greenhouse gas mitigation: an overview, Proceedings of an IPCC Co-sponsored workshop, OECD.
Dessus, S. and O’Connor, D., 2003. Climate policy without tears CGE-based ancillary benefits estimates for Chile, Environmental Resource Economy, Vol. 25, 287-317.
He, K., Lei, Y., Pan, X., Zhang, Y., Zhang, Q. and Chen, D., 2010. Co-benefits from energy policies in China, Energy, Vol. 35, 4265-4272.
Hyslop, A., 2006. Co-benefits of Municipal Climate Change Mitigation Strategies, University of Waterloo.
Groosman, B., Muller, N.Z. and O’Neill, E., 2009. The ancillary benefits from climate policy in the United Ststes, Middlebury College.
IPCC AR4 SYR Appendix Glossary
(http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_appendix.pdf )
IPCC, 2007, The Physical Science Basis Report.
IPCC, 2007, Impacts, Adaptation and Vulnerability Report.
IPCC, 2007, Mitigation of Climate Change Report.
IPCC, 2007, IPCC Fourth Assessment Report.
IEA ,2010 ,Power Generation from Coal.
IEA ,2010 ,Energy Technology Perspectives.
Melichar, J., Havranek, M., Maca, V. and Scasny, M., 2004. Implementation of ExternE Methodology in Eastern Europe, Externalities of Energy: Extension of Accounting Framework and Policy Applications.
McKinsey Company, 2009. Pathways to a low-carbon economy version 2 of the global greenhouse gas abatement cost curve.
Quadrelli, R. and Peterson, S., 2007. The energy-climate challenge : Recent trends in CO2 emissions from fuel combustion, Energy Policy, Vol. 35, 5938-5952.
Reilly, J., Paltsev, S., Felzer, B., Wang, X., Kicklighter, D., Melillo, J., Prinn, R., Sarofim, M., Sokolov, A. and Wang, C., 2007. Global Economic Effects of Changes in Crops, Pasture, and Forests Due to Changing Climate, Carbon Dioxide, and Ozone, Energy Policy, Vol. 35, 5370–5383.
Schwartz, J., 1996. Air Pollution and Hospital Admissions for Respiratory Disease. Epidemiology, Vol. 7, No. 1, 20-28.
Spadaro, J. V. and Rabl, A., 2004. Pathway analysis for population-total health impacts of toxic metal emissions, Risk Analysis, Vol. 24, 1121-1141.
Touloumi1, G., and Katsouyanni, K., 1997. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project, British Medical Journal, Vol. 314, 1658-1663.
Touloumi1, G., and Katsouyanni, K., 1997. Short-term Effects of Ambient Oxidant Exposure on Mortality: A Combined Analysis within the APHEA Project, American Journal of Epidemiology, Vol. 146, 177-185.
UN/ECE, United Nations Economic Commission for Europe, Geneva, Switzerland, 1999. Protocol to the 1979 convention on long-range transboundary air pollution to abate acidification, eutrophication, and ground-level ozone.
USEPA, 2004. User''s Guide for the AMS/EPA Regulatory Model AERMOD, Report No. EPA-454/B-03-001, Washington, DC.
USEPA, 2010. Technology Transfer Network Support Center for Regulatory Atmospheric Modeling: Preferred/Recommended Models, ( http://www.epa.gov/scram001/dispersion_prefrec.htm#aermod. )
Van Harmelen, T., Bakker, J., De Vries, B., Van Vuuren, D., and Mayerhofer, P., 2002. Long-term reductions in costs of controlling regional air pollution in Europe due to climate policy, Environmental Science and Policy, Vol. 5, 349-365.
Van Vuuren, D.P., Cofala, J., Eerens, H.C., Oostenrijk, R., Heyes, C., Klimontb, Z., Den Elzen, M.J.G. and Amann, M., 2006. Exploring the Ancillary Benefits of the Kyoto Protocol for Air Pollution in Europe, Energy Policy, Vol. 4, 444-460.
Wang, X. and Smith, K.R., 1999. Secondary benefits of greenhouse gas control: health impacts in China. Environmental Science and Technology, Vol. 33, 3056-3061.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top