|
[1]S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, J. Laskar, “A 90nm CMOS 60GHz radio,” ISSCC Dig. Tech. Papers, pp. 130–131, Feb. 2008. [2]M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, H. Shimawaki, “TX and RX front-ends for 60 GHz band in 90nm standard bulk CMOS,” ISSCC Dig. Tech. Papers, pp. 558–559, Feb. 2008. [3]A. Tomkins, R. A. Aroca, T. Yamamoto, S. T. Nicolson, Y. Doi, and S. P. Voinigescu, “A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2085–2099, Aug. 2009. [4]C. Marcu, D. Chowdhury, C. Thakkar, L.-K. Kong, M. Tabesh, J.-D. Park, Y. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, A. M. Niknejad, E. Alon, “A 90nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry,” ISSCC Dig. Tech. Papers, pp. 314–315, Feb. 2009. [5]K. Okada, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, N. Li, S. Ito, W. Chaivipas, R. Minami, A. Matsuzawa, “A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” ISSCC Dig. Tech. Papers, pp. 160–161, Feb. 2011. [6]A. Siligaris, O. Richard, B. Martineau, C. Mounet, F. Chaix, R. Ferragut, C. Dehos, J. Lanteri, L. Dussopt, S. D. Yamamoto, R. Pilard, P. Busson, A. Cathelin, D. Belot, P. Vincent, “A 65nm CMOS fully integrated transceiver module for 60 GHz wireless HD applications,” ISSCC Dig. Tech. Papers, pp. 162–163, Feb. 2011. [7]S. Emami, R. F Wiser, E. Ali, M. G Forbes, M. Q Gordon, X. Guan, S. Lo, P. T McElwee, J. Parker, J. R Tani, J. M Gilbert, C. H Doan, “A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” ISSCC Dig. Tech. Papers, pp. 164–165, Feb. 2011. [8]V. Vidojkovic, G. Mangraviti, K. Khalaf, V. Szortyka, K. Vaesen, W. V. Thillo, B. Parvais, M. Libois, S. Thijs, J. R. Long, C. Soens, P. Wambacq, “A low-power 57-to-66GHz transceiver in 40nm LP CMOS with -17dB EVM at 7Gb/s,” ISSCC Dig. Tech. Papers, pp. 268–269, Feb. 2012. [9]WirelessHD Specification Version 1.1 Overview, May, 2010. [Online]. Available: http://www.wirelesshd.org/ [10]WiGig White Paper Version 1.1, July, 2010. [Online]. Available: http://wirelessgigabitalliance.org/specifications/ [11]Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs). Amendment 2: Millimeter-Wave-Based Alternative Physical Layer Extension, IEEE Standard 802.15.3c-2009, 2009. [12]Draft Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements, Part 11: Wireless LAN Medium Access Control 5 (MAC) and Physical Layer (PHY) Specifications. Amendment 6: Enhancements for Very High Throughput in the 60 GHz Band, IEEE Standard P802.11ad™/D0.1, 2010. [13]J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, W.-C. Huang, and H. Wang, “A 25–75-GHz broadband Gilbert-cell mixer using 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007. [14]J.-H. Tsai, H.-Y. Yang, Tian-Wei Huang, and Huei Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554–556, Aug. 2008. [15]J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18-um CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 784–787 [16]J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, W.-C. Huang, and H. Wang, “A 25–75-GHz broadband Gilbert-cell mixer using 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007. [17]J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 670–678, March 2012. [18]E. Laskin, P. Chevalier, A. Chantre, B. Sautreuil, and S. P. Voinigescu, “165-GHz transceiver in SiGe technology,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1087–1100, May 2008. [19]S. P. Voinigescu, E. Laskin, I Sarkas, K.H.K. Yau, S. Shahramian, A. Hart, A. Tomkins, P. Chevalier, J. Hasch, P. Garcia, A. Chantre, B. Sautreuil, “Silicon D-band wireless transceivers and applications,” in Proceedings of Asia-Pacific Microwave Conf. , pp. 1857–1867, Dec. 2010. [20]Adrian Tang, G. Virbila, D. Murphy, F. Hsiao, Y. H. Wang, Q. J. Gu, Z. Xu, Y. Wu, M. Zhu, M.-C. Frank Chang, “A 144GHz 0.76cm-resolution sub-carrier SAR phase radar for 3D imaging in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 264–265, Feb. 2012. [21]A. Hajimiri, “Next-generation CMOS RF power amplifier,” IEEE Microw. Mag., vol. 12, no. 1, pp. 38–45, Feb. 2011. [22]H.-Y. Chang, T.-W. Huang, H. Wang, Y.-C. Wang, P.-C. Chao, and C.-H. Chen, “Broad-band HBT BPSK and IQ modulator MMICs and millimeter-wave vector signal characterization,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 908–919, March 2004. [23]S. J. Mahon, E. Convert, P. T. Beasly, A. Bessemoulin, A. Dadello, A. Costantini, A. Fattorini, M. G. McCulloch, B. G. Lawrence, and J. T. Harvey, “Broadband integrated millimeter-wave up- and down-converter GaAs MMICs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2050–2060, May 2006. [24]Y. Hamada, K. Maruhashi, M. Ito, S. Kishimoto, T. Morimoto, and K. Ohata, “A 60-GHz-band compact IQ modulator MMIC for ultra-high-speed wireless communication,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2006, pp. 1701–1704. [25]H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5 um E/D-PHEMT process for millimeter-wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 491–493, July 2008. [26]M. Gavell, H. Zirath, M. Ferndahl, S. E. Gunnarsson, “A linear 70-95 GHz differential IQ modulator for E-band wireless communication,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2010, pp. 788–791. [27]H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, John G.J. Chern, “Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no.1, pp. 20–30, Jan. 2006. [28]J.-H. Tsai, T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no.10, pp. 2075–2085, Oct. 2007. [29]J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no.5, pp. 1350–1360, May 2011. [30]Y.-C. Tsai, J.-L. Kuo, J.-H. Tsai, K.-Y. Lin, and H. Wang, “A 50-70 GHz I/Q modulator with improved sideband suppression using HPF/LPF based quadrature power splitter,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2011. [31]V. K. Paidi, Z. Griffith, W. Yun, M. Dahlstrom, M. Urteaga, N. Parthasarathy, S. Munkyo, L. Samoska, A. Fung, and M. J. W. Rod-well, “G-band (140–220 GHz) and W-band (75–110 GHz) InP DHBT medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol.53, no. 2, pp. 598–605, Feb. 2005. [32]W. R. Deal, X. B. Mei, V. Radisic, M. D. Lange, W. Yoshida, P.-H. Liu, J. Uyeda, M. E. Barsky, A. Fung, T. Gaier, and R. Lai, “Development of sub-millimeter-wave power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 55, no.12, pp. 2719–2726, Dec. 2007. [33]A. Tessmann, I. Kallfass, A. Leuther, H. Massler, M.l Kuri, M. Riessle, M. Zink, R. Sommer, A. Wahlen, H. Essen, V. Hurm, M. Schlechtweg, and O. Ambacher, “Metamorphic HEMT MMICs and modules for use in a high-bandwidth 210 GHz radar,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2194–2205, Oct. 2008. [34]V. Radisic, D. Scott, S. Wang, A. Cavus, A. G.-Aitken, and W. R. Deal, “235 GHz amplifier using 150 nm InP HBT high power density transistor,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 335–337, June 2011. [35]V. Radisic, K. M. K. H. Leong, X. B. Mei, S. Sarkozy, W. Yoshida, P.-H. Liu, J. Uyeda, R. Lai, and W. R. Deal, “A 50 mW 220 GHz power amplifier module,” in IEEE MTT-S Int. Dig., May 2010, pp. 45–48. [36]C. Y Law, A.-V. Pham, “A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS,” ISSCC Dig. Tech. Papers, pp. 426–427, Feb. 2010. [37]Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 191–193, Dec. 2008. [38]Z. Xu, Q. J. Gu and M.-C. F. Chang, “A W-band current combined power amplifier with 14.8dBm Psat and 9.4% maximum PAE in 65nm CMOS,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2011. [39]K.-Y. Wang, T.-Y. Chang, C.-K. Wang, “A 1V 19.3dBm 79GHz power amplifier in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 260–262, Feb. 2012. [40]Z. Xu, Q. J. Gu, I. Ku, and M.-C. F. Chang, “A compact, fully differential D-band CMOS amplifier in 65nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference (ASSCC), Nov. 2010. [41]M. Seo, B. Jagannathan, C. Carta, J. Pekarik, L. Chen, C. P. Yue, M. Rodwell, “A 1.1V 150GHz amplifier with 8dB gain and +6dBm saturated output power in standard digital 65nm CMOS using dummy-prefilled microstrip lines,” ISSCC Dig. Tech. Papers, pp.484–485, Feb. 2009. [42]U. R Pfeiffer, E. Ojefors, Y. Zhao, “A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160GHz,” ISSCC Dig. Tech. Papers, pp.416–417, Feb. 2010. [43]E. Laskin, K. W. Tang, K. H. K. Yau, P. Chevalier, A. Chantre, B. Sautreuil, S. P. Voinigescu, “170-GHz transceiver with on-chip antennas in SiGe technology,” in IEEE Radio Freq. Integr. Circuits Symp., pp. 637–640, July 2008. [44]D. Hou, Y.-Z. Xiong, W.-L. Goh, W. Hong, and M. Madihian, “A D-Band cascode amplifier with 24.3 dB gain and 7.7 dBm output power in 0.13 um SiGe BiCMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 191–193, Apr. 2012. [45]Digital Modulation in Communications Systems — An Introduction, Agilent Application Note 1298. [46]Behzad Razavi, RF Microelectronics, Second Edition, Prentice-Hall Inc., Upper Saddle River, NJ, 2012. [47]Rodger E. Zimmer, and William H. Tranter, Principles of Communications, Fifth Edition, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ, 2002. [48]L. Litwin, and M. Pugel, “The principles of OFDM,” RF Signal Processing. [Online]. Available: http://www.rfdesign.com, pp. 30–48, Jan. 2001. [49]S. Forestier, P. Bouysse, R. Quere, A. Mallet, J. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method,” IEEE Trans. Microw. Theory Tech., vol. 52, no.4, pp. 1132–1141, April 2004. [50]M. D. McKinley, K. A. Remley, M. Mylinski, J. S. Kenney, D. Schreurs, B. Nauwelaers, “EVM calculation for broadband modulated signals,” in 64th ARFTG Microwave Measurement Conference, Orlando, FL, Dec. 2004, pp. 45–52. [51]R. A. Shafik, Md. S. Rahman, AHM R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” IEEE Conf. on Electrical and Computer Engineering (ICECE), pp. 408–411, Dec. 2006. [52]A. A. Abidi, “Direct-conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Dec. 1995. [53]B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 44, pp. 428–435, June 1996. [54]A. Brillant and D. Pezo, “Modulation imperfections in IS54 dual mode cellular radio.” In Proceedings of the 27th European Microwave Conference and Exhibition, 1997, pp. 347–353. [55]K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, P. Frank, and D. Sawatzky, “A high-bit rate Ka-band direct conversion QPSK demodulator," IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 365–367, July, 2008. [56]H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30–50 GHz wide modulation bandwidth bidirectional BPSK demodulator/modulator with low LO power,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 332–334, May, 2009. [57]J. Kim, W. Choi, Y. Park, and Y. Kwon, “60 GHz broadband image rejection receiver using varactor tuning,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2010, pp. 381–384. [58]A. Georgiadis, “Gain, phase imbalance, and phase noise effects on error vector magnitude,” IEEE Trans. Veh. Technol., vol.53, no.2, pp. 443–449, March 2004. [59]R. Liu, Y. Li, H. Chen, Z. Wang, “EVM estimation by analyzing transmitter imperfections mathematically and graphically,” Analog Integr. Circuits Signal Process, vol. 48, No. 3, pp. 257–262, 2006. [60]S. Merchan, A. G. Armada, and J. L. Garcia, “OFDM performance in amplifier nonlinearity,” IEEE Trans. Broadcast., vol. 44, no.1, pp. 106–114, Mar. 1998. [61]B. Razavi, T. Aytur, C. Lam, F.-R. Yang, R.-H. Yan, H.-C. Kang, C.-C. Hsu, C.-C. Lee, “Multiband UWB transceivers,” in Proc. 2005 IEEE Custom Integrated Circuits Conference (CICC), pp.141–148, Sep. 2005. [62]A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for MM-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635–2649, Nov. 2011. [63]J. Jeong, Y. Kwon, “A fully integrated V-band PLL MMIC using 0.15-um GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1042–1050, May 2006. [64]D. Norgaard, “The phase-shift method of single sideband signal generation,” Proceedings of the IRE, December 1956, pp. 1718–1735. [65]“TSMC 90nm CMOS Mixed Signal RF Low Power 1P9M Salicide Cu_lowK 1.2&2.5V Spice Model”, ver. 1.2, Taiwan Semiconductor Manufacturing Co., LTD, Hsinchu, Taiwan, R.O.C., Feb. 2009. [66]N. Marchand, “Transmission-line conversion transformers,” Electronics Letter, vol. 17, no.2, pp. 142–146, Dec. 1994. [67]S.-F. Chao, J.-J. Kuo, C.-L. Lin, M.-D. Tsai, and H. Wang, “A DC–11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 482–484, Jul. 2008. [68]P. J. Sulivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer,” IEEE J. Solid-State Circuits, vol. 32, no. 7, pp. 1151–1155, July 1997. [69]L. Han, K. Wu, and X.-P. Chen, “Accurate synthesis of four-line interdigitated coupler,” IEEE Trans. Microw. Theory Tech., vol. 57, no.10, pp. 2444–2455, Oct. 2009. [70]王士鳴撰,微帶線高指向性耦合結構之研究與其應用,國立交通大學電信工程學系博士論文,2005年9月。 [71]George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, 2nd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. [72]M.-F. Lei, P.-S. Wu, T.-W. Huang, and H. Wang, “Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2004, pp. 235–238. [73]Y.-J. Hwang, C.-H. Lian, H. Wang, M. W. Sinclair, R. G. Gough, H. Kanoniuk, and T.-H. Chu, “A 78-114 GHz monolithic sub-harmonically pumped GaAs-based HEMT diode mixer," IEEE Microw. Wireless Compon. Lett., vol. 12, no. 6, pp. 209–211, June, 2002. [74]Y.-J. Hwang, H. Wang, and T.-H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer," IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313–315, July, 2004. [75]Guillermo Gonzales, Microwave Transistor Amplifier Analysis and Design, 2nd Edition, Prentice-Hall Inc., Englewood Cliffs, 1997. [76][Online]. Available: http://www.ti.com/product/opa357, 250MHz, Rail-to-Rail I/O, CMOS Operational Amplifiers w/ Shutdown (Rev. E) Datasheet, Texas Instruments Inc., May 2009. [77]Adel S. Sedra, Kenneth C. Smith, Microelectronic Circuit, 5th Edition, Oxford University Press, Inc., 2004. [78]WIN semiconductor GaAs 0.15 μm pHEMT Model Handbook. Taipei, Taiwan, R.O.C.: WIN Semiconduct., 2003. [79]S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174–2186, Nov. 2005. [80]H. Wang, J.-H. Tsai, K.-Y. Lin, Z.-M. Tsai, and T.-W. Huang, “CMOS power amplifiers for millimeter-wave applications,” to appear in IEEE Microw. Mag. [81]S. J. Mahon, A. C. Young, A. P. Fattorini and J. T. Harvey, “6.5 watt, 35 GHz balanced power amplifier MMIC using 6-inch GaAs pHEMT commercial technology,” in IEEE Compound Semiconduct. IC Symp. (CSICS), Oct. 2008. [82]V. Radisic, K. M.K.H. Leong, S. Sarkozy, X. Mei, W. Yoshida, P.-H. Liu, and R. Lai, “A 75 mW 210 GHz power amplifier module,” in IEEE Compound Semiconduct. IC Symp. (CSICS), Oct. 2011. [83]A. Komijani, and A. Hajimiri, “A wideband 77-GHz, 17.5-dBm fully integrated power amplifier in silicon,” IEEE J. Solid-State Circuits., vol. 41, no. 8, pp. 1749–1756, Aug. 2006. [84]T. Suzuki, Y. Kawano, M. Sato, T. Hirose, K. Joshin, “60 and 77 GHz power amplifiers in standard 90nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 562–573, Feb. 2008. [85]David M. Pozar, Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. [86]P. J. Riemer, J. S. Humble, J. F. Prairie, J. D. Coker, B. A. Randall, B. K. Gilbert, and E. S. Daniel, “Ka-band SiGe HBT power amplifier for single-chip T/R module applications,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2007, pp. 1071–1074. [87]Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 818–820, Dec. 2008. [88]W. R. Deal, X. B. Mei, V. Radisic, B. Bayuk, A. Fung, W. Yoshida, P. R. Liu, J. Uyeda, L. Samoska, T. Gaier, R. Lai, “A balanced sub-millimeter wave power amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2008, pp. 399–402. [89]J. Lee, C.-C. Chen, J.-H. Tsai, K.-Y. Lin and H. Wang, “A 68-83 GHz power amplifier in 90 nm CMOS,” in IEEE MTT-S Int. Microwave Symp. Dig., June, 2009, pp. 437–440. [90]A. Dadello, A. Fattorini, S. J. Mahon, A. Bessemoulin, and J. T. Harvey, “44-GHz high power and driver microstrip amplifier MMICs using 6-inch 0.15-um PHEMTs” In Proceedings of the 36th European Microwave Conference and Exhibition, 2006, pp. 1709–1712. [91]I. Aoki, S. Kee, R. Magoon, R. Aparicio, F. Bohn, J. Zachan, G. Hatcher, D. McClymont, and A. Hajimiri, “A fully-integrated quad-band GSM/GPRS CMOS power amplifier,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2747–2758, Dec. 2008. [92]K. H. An, et al, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE J. Solid-State Circuits., vol. 43, no. 5, pp. 1064–1075, May 2008. [93]W. L. Chan, and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply,” IEEE J. Solid-State Circuits., vol. 45, no. 3, pp. 554–564, March 2010. [94]J. Kim, et al, “A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure,” IEEE J. Solid-State Circuits., vol. 46, no. 5, pp. 1034–1048, May 2011. [95]J. Kim, et al, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer,” IEEE J. Solid-State Circuits., vol. 47, no. 3, pp. 599–614, March 2012. [96]J.-W. Lai, A. Valdes-Garcia, “A 1V 17.9dBm 60GHz power amplifier in standard 65 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 424–425, Feb. 2010. [97]J. Chen, A. M Niknejad, “A compact 1V 18.6dBm 60GHz power amplifier in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, pp. 432–433, Feb. 2011. [98]I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits., vol. 37, no. 3, pp. 371–383, March 2002. [99]U. R. Pfeiffer, and D. Goren, “A 23-dBm 60-GHz distributed active transformer in a silicon process technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no.5, pp. 857–865, May 2007. [100]Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55-71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1637– 1646, July 2009. [101]P.-C. Huang, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A high-efficiency, broadband CMOS power amplifier for cognitive radio applications,” IEEE Trans. Microw. Theory and Tech., vol. 58, no. 12, pp. 3556–3564, Dec. 2010. [102]H. Wang, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709–2722, Dec. 2010. [103]“TSMC 65nm CMOS Mixed Signal RF 1P9M Salicide Low-K IMD 1P6M-1P9M PDK”, ver. 1.0b, Taiwan Semiconductor Manufacturing Co., LTD, Hsinchu, Taiwan, R.O.C., Sep. 2008. [104]http://www.tpt-wirebonder.com/en/applications/wedge-wedge/ [105]http://www.tpt-wirebonder.com/en/applications/ball-wedge/ [106]J. Pan, and P. Fraud, “Wire bonding challenges in optoelectronics packaging,” in Proceedings of the 1st SME Annual Manufacturing Technology Summit: Dearborn, MI, August 1, 2004. [107]D. J. Beck, and A. C. Perez, “Wire bond technology the great debate: ball vs. wedge,” EE Times Education & Training Technical Papers, Sept. 2011.
|