跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱懿歆
研究生(外文):Yi-Hsin Chiu
論文名稱:國中生化學表徵形成與轉換能力之研究—以『酸、鹼、鹽』單元為例
論文名稱(外文):A study of 9th graders’ capabilities in formulating and transferring chemical representations: Using “Acid, Base, and Salt” as an Example
指導教授:吳穎沺吳穎沺引用關係
指導教授(外文):Ying-Tien Wu
口試委員:邱國力李松濤吳穎沺
口試委員(外文):Chiu, Kuo-LiLI, Song-TaoYing-Tien Wu
口試日期:2013-06-27
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學應用與推廣學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:化學學習表徵表徵形成表徵轉換
外文關鍵詞:chemical learningrepresentationrepresentation formulationrepresentation transformation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:2
本研究探討國中生在『酸、鹼、鹽』單元中化學表徵形成與轉換能力,並進一步探討不同化學學習成就的學生在化學表徵形成轉換能力上是否有差異。研究對象為台中市某國中十四個三年級的班級,共383位學生,採調查研究法與相關研究法方式進行。資料收集主要為研究者自編之「化學表徵形成能力問卷」、「化學表徵轉換能力測驗」。本實驗將資料先進行質化分析,再將分析結果轉成量化數據,量化結果以交叉表進行統計分析,並以單因子變異數分析進一步探討不同類型的化學表徵形成與轉換能力間是否有差異。研究結果如下:(一)學生在『酸、鹼、鹽』單元的學習上,巨觀表徵較易形成,符號表徵次之,微觀表徵最不易形成;(二)學生在『酸、鹼、鹽』單元的學習上,牽涉到微觀表徵與其他表徵相互轉換時,學生表現均不好;(三)學生在『酸、鹼、鹽』單元的學習上,化學表徵形成能力與化學表徵轉換能力之間有顯著關聯;(四)學生在『酸、鹼、鹽』單元的學習上,化學表徵形成能力與化學表徵轉換能力均與「化學學習成就」之間有顯著關聯。本研究建議教師在教學上,應以微觀表徵為教學核心,加強學生微觀表徵形成及微觀表徵與其他表徵相互轉換的能力。
In this study, a total of 383 9th graders’ ability in formulating and transferring representations regarding “acid” and “acid-base neutralization” was investigated. Also, this study explored if high achievers and low achievers varied in their ability in formulating and transferring representations. Two instruments for assessing student ability in formulating and transferring representations regarding acid and acid-base neutralization were developed in this study. The participants’ responses on the questionnaires were analyzed qualitatively, and then this study categorized the students’ ability in formulating and transferring representations into different levels. The major findings of the current study are: 1. regarding ability in formulating representations of “acid” and “acid-base neutralization”, the students showed better ability in formulating macro representations, followed by symbolic representations and micro representations; 2. the students had difficulties transferring from the micro representation of“acid” and “acid-base neutralization” to the other two levels of representations; 3. The students’ ability in ability in formulating representations regarding “acid” and “acid-base neutralization” was significantly correlated with that in transferring representations; 4. The students’ ability in formulating and transferring representations regarding “acid” and “acid-base neutralization” was associated with their chemical achievement. Implications for educational practices and future research were also discussed in this study.
第一章 緒論…………………………………………………………………………1
第一節 說明研究背景與動機…………………………………………………1
第二節 研究目的與研究問題…………………………………………………3
第三節 名詞解釋………………………………………………………………4
第四節 研究範圍與研究限制…………………………………………………5
第二章 文獻探討 …………………………………………………………………6
第一節 表徵……………………………………………………………………6
第二節 化學表徵………………………………………………………………12
第三節 化學表徵轉換與化學學習……………………………………………17
第三章 研究方法 …………………………………………………………………21
第一節 研究設計………………………………………………………………21
第二節 研究流程………………………………………………………………22
第三節 研究對象………………………………………………………………23
第四節 研究工具………………………………………………………………24
第五節 資料處理與分析………………………………………………………29
第四章 研究結果 …………………………………………………………………32
第一節 國三學生化學表徵形成能力之表現分析……………………………32
第二節 國三學生化學表徵轉換能力之表現分析……………………………48
第三節 化學表徵形成能力與轉換能力之關聯分析…………………………52
第四節 不同化學學習成就者的化學表徵形成能力及化學表徵轉換能力
之比較分析……………………………………………………………55
第五章 討論…………………………………………………………………………59
第一節 在化學學習上,學生各類型表徵形成能力的表現情形……………59
第二節 在化學學習上,各類型表徵轉換能力的表現………………………61
第三節 化學表徵形成能力與表徵轉換能力的關聯性………………………65
第四節 化學學習上,微觀表徵形成與轉換能力與迷思概念的關聯性……66
第六章 結論與建議 ………………………………………………………………68
第一節 結論……………………………………………………………………68
第二節 建議……………………………………………………………………69
參考文獻………………………………………………………………………………71
附錄一 「化學表徵形成能力問卷」………………………………………………80
附錄二 「化學表徵轉換能力測驗」………………………………………………81

(一)中文部分
教育部 (2011)。普通高級中學課程綱要總綱。臺北:教育部。
丁美枝 (2002)。不同教學媒體對國中學生學習「原子結構」之成效。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北。
呂益準 (2005)。以混成軌域之電腦多媒體教導學生判斷分子形狀。國立臺灣師範大學化學系研究所碩士論文,未出版,臺北。
余民寧 (1999)。有意義的學習 : 概念構圖之研究。臺北:商鼎。
李明鴻 (2008)。高中生氣體概念的發展。國立臺灣師範大學化學系研究所碩士論文,未出版,臺北。
李佩蓉 (2009)。從腦波探討表徵連接對化學學習歷程的影響及問題解決的成效。國立交通大學教育研究所碩士論文,未出版,新竹。
林天陽 (2009)。以科學史電腦多媒體素材應用於國中「原子結構」輔助教學之成效研究。國立台灣師範大學化學研究所在職進修化學教學碩士班論文,未出版,臺北。
林郁芬 (2011)。空間能力、先備知識與表徵順序對七年級概念理解之影響:以人體呼吸運動單元為例。國立臺灣師範大學科學教育研究所碩士班碩士論文,未出版,臺北。
林麗娟 (1996)。多媒體電腦圖像設計與視覺記憶的關係。教學科技與媒體,28,3-12。
林靜雯 (2005)。整合類比與多重表徵研究取向探究多重類比設計對兒童電學概念學習之影響。科學教育學刊,13(3),317-345。
邱美虹 (2001)。台灣地區中學生「粒子、化學平衡、酸鹼值」概念之心智模式與成因之探討(Ⅱ)。行政院國家科學委員會專題研究計畫成果報告(NSC90-2511-S-003-092)。
邱美虹 (2005)。以認知師徒制探討建模能力與歷程對學生學習物質科學中 [氧化與還原] 之影響。行政院國家科學委員會計畫。
邱惠芬 (2003)。多媒體介面對國小學童學習動機、學習成就及學習保留的影響。屏東師範學院教育科技研究所碩士論文,未出版,屏東。
卓憲瑞 (2008)。探究多重表徵教學對於八年級學生學習化學平衡概念與概念改變的影響。國立臺灣師範大學科學教育研究所碩士班碩士論文,未出版,臺北。
洪振方 (1987)。學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台灣師範大學化學研究所碩士論文,未出版,臺北。
許嘉仲 (2002)。影響國中學生理化科學習因素之個案研究。國立彰化師範大學物理學系研究所碩士論文,未出版,彰化。
張春興 (1989)。張氏心理學辭典。臺北:東華書局。
張春興 (2006)。張氏心裡學辭典(重訂版)。臺北:東華書局。
張春興、林清山 (1982)。教育心理學。臺北:東華書局。
陳彥任 (2007)。中學生 [二段式大氣迷思概念診斷測驗] 的發展與應用。中原大學教育研究所碩士論文,未出版,桃園。
陳盈吉 (2004)。探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子概念為例。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北。
覃湘晴 (2005)。探討自我解釋對四年級學生閱讀不同表徵之學習教材的影響-以國小「繁殖」概念為例。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北。
劉文雄 (2011)。探討學生在問題解決脈絡的科學概念學習。國立高雄師範大學科學教育研究所博士論文,未出版,臺北。
蔡宗程 (2004)。數學符號知識及運算概念與學生學習化學反應式之研究。國立臺灣師範大學教育研究所碩士論文,未出版,臺北。
蔡俊義 (2011)。多重表徵理論在理化科教學成效之研究—以酸鹼鹽單元為例。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北。
(二)英文部分
Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Marek, E. A. (1992). Understandings and misunderstandings of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
Aksela, M. (2005). Supporting meaningful chemistry learning and higher-order thinking through computer-assisted inquiry: A design research approach. Maija Aksela.
Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70, 549–563.
Andersson, B. (1990). Pupils' Conceptions of Matter and its Transformations (age 12-16). Studies in Science Education, 18, 53-85.
Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33,131-152.
Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14(3), 241-255.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
Ainsworth, S. (2008). The Educational Value of Multiple-representations when Learning Complex Scientific Concepts. Visualization: Theory and Practice in Science Education, 3, 191–208.
Ben-Zvi, R., Eylon, B.-S., & Silberstein, J. (1987). Students’ visualization of some chemical reactions. Education in Chemistry, 24(4), 117–120.

Bodner, G. M. (1991). I Have Found You an Argument: The Conceptual Knowledge of Beginning Chemistry Graduate Students. Journal of Chemical Education, 68, 385-388.
Bodner, G. M. (1992). The Fipse Lectures: Refocusing the General Chemistry Curriculum Why Changing the Curriculum may not be Enough. Journal of Chemical Education, 69, 186-190.
Boo, H. K., (1998). Students’ Understanding Of Chemical Bonding And Energetics Of Chemical Reactions, Journal of Research in Science Teaching, 35(5), 569–581.
Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011). Assessing the Difficulty of Mathematical Translations: Synthesizing the Literature and Novel Findings. International Electronic Journal of Mathematics Education, 6(3).
Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. Developing models in science education, 119-135.
Bruner, J. S. (1964). The course of cognitive growth. American psychologist, 19(1), 1-15.
Coll R.K. and Treagust D.F. (2001), Learners' mental models of chemical bonding, Research in Science Education, 31, 357-382.
Cheng, M., & Gilbert, J. K. (2009). Towards a Better Utilization of Diagrams in Research into the Use of Representative Levels in Chemical Education. Multiple Representations in Chemical Education, 4, 55-73.
Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. Multiple representations in chemical education, 4, 169-191.
Devetak, I. (2005). Explaining the latent structure of understanding submicropresentations in science. Doctoral dissertation, Faculty of Education, University of Ljubljana, Ljubljana.
Devetak, I., Lorber, E. D., Juriševič, M., & Glažar, S. A. (2009). Comparing Slovenian year 8 and year 9 elementary school pupils’ knowledge of electrolyte chemistry and their intrinsic motivation. Chemistry Education Research and Practice, 10(4), 281-290.
Ebenezer, J. V. (2001). A Hypermedia Environment To Explore And Negotiate Students’ Conceptions: Animation Of The Solution Process Of Table Salt, Journal of Science Education and Technology, 10(1), 73–92.
Gabel, D. (1994). Handbook of research on science teaching and learning. Macmillan Library Reference.
Gabel, D. (1998). The complexity of chemistry and implications for teaching. International handbook of science education, 1, 233-248.
Gabel, D. L., (1999). Improving Teaching and Learning Through Chemistry Education Research: A Lock to the Future, Journal of Chemical Education, 76(4), 548-554.
Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695–697.
Gilbert, J. K. (1994). Models & modelling in science education. Hatfield: Association for Science Education.
Gilbert, J. K. (1993). The role of models and modelling in science education. Hatfield: Association for Science Education.
Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. Developing models in science education, 3-17.
Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
Harrison, A. G. & Treagust, D. F. (2000). Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use in Grade 11 Chemistry, Science Education, 84, 352–381.
Harrison, A. G., & Treagust, D. F. (2002). The particular nature of matter: challenges in understanding the submicroscopic world. Chemical Education: Towards Research-based Practice, 17, 189.
Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding.
Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 71(256), 33–40.
Johnstone, A.H. (1984). New Stars for the Teacher to Steer By? Journal of Chemical Education, 61(10), 847-849.
Johnstone, A.H. (1991). Why Science is Difficult to Learn? Things are Seldom What they Seem. Journal of Computer Assisted Learning, 7, 75-83.
Johnstone, A. H. (1993). The development of chemistry teaching. Journal of Chemical Education, 70(9), 701-705.
Johnstone, A. H. (2000). Teaching of chemistry: Logical or psychological? Chemical Education: Research and Practice in Europe, 1(1), 9–15.
Jungck, J., & Calley, J. (1985). Strategic simulations and post-socratic pedagogy: constructing computer software to develop long-term inference through experimental inquiry. American Biology Teacher, 47, 11-15.
Marais, P., & Jordaan, F. (2000). Are we taking symbolic language for granted? Journal of Chemical Education, 77(10), 1355–1357.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1-19.
Mayer, R. E., & Anderson, R. B. (1991). Animation need narrations: An experimental test of dual-coding hypothesis. Journal of Educational Psychology 83(4), 484-490.
McKendree, J., Small, C., Stenning, K., & Conlon, T. (2002). The role of representation in teaching and learning critical thinking. Educational Review, 54(1), 57-67.
Nakhleh, M. B., & Krajcik, J. S. (1994). The effect of level of information as presented by different technologies on students' understanding of acid, base and pH concepts. Journal of Research in Science Teaching, 31(10), 1077-1096.
National Research Council (1996). Nationalscience education standards. Washington, DC: National Academy Press.
Nelson, P. (2002). Teaching chemistry progressively: From substances, to atoms and molecules, to electrons and nuclei. Chemistry Education: Research and Practice, 3, 215–228.
Nicoll, G. (2001). A Report Of Undergraduates’ Bonding Alternative Conceptions, International Journal of Science Education, 23(7), 707–730.
Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter: A cross-age study. Science Education, 65(2), 187-196
Paivio, A. (1971). Imagery and verbal processes. New York: Holt, Rinehart & Winston.
Paivio, A. (1986). Mental repersentations: A dual coding approach. New York: Oxford University Press.
Paivio, A. (1990). Mental representations: a dual coding approach (2nd ed.). New York: Oxford University Press.
Perner, J. (1991). Understanding the representational mind (Vol. 29). Cambridge, MA: MIT press.
Ravialo, A. (2001). Assessing Students’ Conceptual Understanding of Solubility Equilibrium, Journal of Chemical Education, 78(5), 629–631.
Smith, K. J., & Metz, P. A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233-235
Sirhan, G. (2007). Learning difficulties in chemistry: An overview. Journal of Turkish Science Education, 4(2), 2-20.
Taber, K. (2002). Chemical misconceptions: Prevention, diagnosis and cure (Vol. 1). Royal Society of Chemistry.
Tockus-Rappoport, L. (2008). Computer Simulations as a Bridge Between Different Representation Levels of Scientific Concepts (Doctoral dissertation, Hebrew University of Jerusalem).
Treagust D. F., Chittleborough G. D. & Mamiala T. L. (2002), Students' understanding of the role of scientific models in learning science, International Journal of Science Education, 24, 357-368
Treagust, D. F., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368.
Treagust, D. F. (2009). Multiple representations in chemical education (Vol. 4). J. K. Gilbert (Ed.). Springer.
Tuckey, H., & Selvaratnam, M. (1993). Studies involving three-dimensional visualisation skills in chemistry. Studies in Science Education, 21, 99–121.
Voska, K. W., & Heikkinen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160-176.
Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual understanding of chemical representations: students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821 - 842.
Yarroch, W. L. (1985). Student understanding of chemical equation balancing. Journal of Research in Science Teaching, 22(5), 449-459.
Zoller, U. (1990). Students’ Misunderstandings and Alternative Conceptions in College Freshman Chemistry (General and Organic), Journal of Research in Science Teaching, 27(10), 1053–1065.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top