跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范強
研究生(外文):Chiang Fan
論文名稱:外加電場誘發電偶極旋轉對甲基胺溴化鉛的電滯行為
論文名稱(外文):Effect of Dipole Rotation on Hysteresis in Methylammonium Lead Bromide
指導教授:邱雅萍邱雅萍引用關係
指導教授(外文):Ya-Ping Chiu
口試委員:陳俊維陳宜君
口試委員(外文):Chun-Wei ChenI-Ching Chen
口試日期:2019-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:有機金屬鹵化鈣鈦礦掃描式穿隧顯微鏡電場誘發電偶極翻轉電流-電壓圖電滯現象
DOI:10.6342/NTU201902165
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電場誘發嵌於鹵化鈣鈦礦結構中的有機分子電偶極旋轉已被視為控制鈣鈦礦基本性質與穩定性的要素之一。
然而,截至今日,電場是如何誘發嵌於鹵化鈣鈦礦結構中的有機分子電偶極旋轉仍然是未知的。
我們利用介面-掃描式穿隧顯微鏡與能譜量測紀錄甲基胺溴化鉛實空間的原子級影像,同時測量對應的電流-電壓圖觀察並探討因有機分子電偶極旋轉所造成的電滯現象。
在本實驗中,在順向施加偏壓後立即再逆轉向施加偏壓的掃描模式下,實驗發現在特定電壓區間,分別出現的形貌發生改變與、四個電性似能隙表現(亦即在外加施加偏壓之下,電流沒有變化),和反曲點異常的電流-電壓電滯現象(分別發生在由施加負至正偏壓時,掃描條件在1.68伏特;以及由施加、正至負電偏壓時,掃描的條件在-0.87伏特)。
我們認為電壓引致分子電偶極翻轉可以造成兩種相反的表面極性。這兩種相異的表面極性,會使表面電性在表面似N型與似P型行為之間發生轉換;。再者,於電流-電壓圖中,兩個反曲點則是對應分子電偶極翻轉的臨界點;。表面極性電性的表現轉換的現象,是主要造成甲基胺溴化鉛異常的電流-電壓電滯現象的原因。
Electric-field-induced dipole rotation of the intercalated organic molecules in halide perovskites has been suggested to be one controllable factor for fundamental properties and stabilities in perovskites. However, up to now, how the electric field triggers the dipole rotation of the intercalated organic molecules is still unknown. Here, we record the real-space atomic image and simultaneously probe the corresponding current-voltage (I-V) hysteresis in the methylammonium lead bromide (MAPbBr3) system using cross-sectional scanning tunneling microscopy and spectroscopy. In this work, we addressed the change of topography at specific bias intervals and anomalous I-V hysteresis with four gap-like regions as well as two unusual inflection points at forward 1.68 V and backward -0.87 V under ramp reversal scanning mode. We suppose that the dipole rotation, initiated by an electric field, concludes to two opposite surface dipole moments, creating an electronic transformation between the n-type-like and p-type-like feature. The two inflection points correspond to the critical voltage of dipole rotation. The transformation thus forms an abnormal I-V hysteresis behavior in MAPbBr3.
口試委員會審定書...........................................................................................................1
致謝...................................................................................................................................2
中文摘要...........................................................................................................................3
Abstract..............................................................................................................................4
List of Figures Captions................................................................................................ - 7 -
Chapter 1. Introduction..................................................................................................- 9 -
Chapter 2. Experimental instrument and methods .....................................................- 12 -
2.1 Cross-sectional scanning tunneling microscopy (XSTM).....................................- 12 -
2.2 Ultra-High Vacuum System...................................................................................- 13 -
2.3 Principles of scanning tunneling microscopy (STM) ...........................................- 22 -
2.4 Scanning mode.......................................................................................................- 24 -
2.5 Scanning Tunneling spectroscopy (STS) ..............................................................- 27 -
2.6 Background of STM FFT image............................................................................- 28 -
2.7 Sample preparation of MAPbBr3..........................................................................- 30 -
Chapter 3. Experimental data analysis.........................................................................- 31 -
3.1 Topography image of MAPbBr3...........................................................................- 31 -
3.2 STS data.................................................................................................................- 33 -
3.3 CITS data and FFT image at specific bias intervals .............................................- 35 -
Chapter 4. Result and discussion.................................................................................- 41 -
4.1 MA dipole rotation.................................................................................................- 41 -
4.2 MAPbBr3 surface image.......................................................................................- 43 -
4.3 Effect of dipole rotation on surface DOS..............................................................- 43 -
4.4 Model of the physical mechanism of the MAPbBr3 surface….............................- 44 -
Chapter 5. Conclusion..................................................................................................- 51 -
Reference list...............................................................................................................- 52 -
Reference list
[1] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Nature 517, 476 (2015).
[2] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348, 1234 (2015).
[3] Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, Nature Energy 1, 16148 (2016).
[4] D. Y. Luo et al., Science 360, 1442 (2018).
[5] K. Leng et al., Nat Mater 17, 908 (2018).
[6] M. I. Saidaminov et al., Nat Commun 6 (2015).
[7] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, 342, 344 (2013).
[8] G. A. Elbaz, D. B. Straus, O. E. Semonin, T. D. Hull, D. W. Paley, P. Kim, J. S. Owen, C. R. Kagan, and X. Roy, Nano Lett 17, 1727 (2017).
[9] H. T. Wei et al., Nat Photonics 10, 333 (2016).
[10] Z. L. Chen et al., Nat Commun 8 (2017).
[11] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh, and J. Seo, Nature 567, 511 (2019).
[12] J. M. Frost, K. T. Butler, and A. Walsh, Apl Mater 2 (2014).
[13] S. Liu, F. Zheng, N. Z. Koocher, H. Takenaka, F. G. Wang, and A. M. Rappe, J Phys Chem Lett 6, 693 (2015).
[14] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett 14, 2584 (2014).
[15] F. Z. Bi, S. Markov, R. L. Wang, Y. H. Kwok, W. J. Zhou, L. M. Liu, X. Zheng, G. H. Chen, and C. Y. Yam, J Phys Chem C 121, 11151 (2017).
[16] C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, and S. Sanvito, Nat Commun 6 (2015).
[17] Z. S. Zhang, R. Long, M. V. Tokina, and O. V. Prezhdo, J Am Chem Soc 139, 17327 (2017).
[18] A. M. A. Leguy et al., Nat Commun 6 (2015).
[19] J. Jiang, R. Pachter, Y. R. Yang, and L. Bellaiche, J Phys Chem C 121, 15375 (2017).
[20] F. Chen et al., J Mater Chem C 5, 7739 (2017).
[21] C. Quarti, E. Mosconi, and F. De Angelis, Chem Mater 26, 6557 (2014).
[22] R. Ohmann, L. K. Ono, H. S. Kim, H. P. Lin, M. V. Lee, Y. Y. Li, N. G. Park, and Y. B. Qi, J Am Chem Soc 137, 16049 (2015). [23] C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O''Regan, A. Walsh, and M. S. Islam, Nat Commun 6 (2015).
[24] P. Calado, A. M. Telford, D. Bryant, X. E. Li, J. Nelson, B. C. O''Regan, and P. R. F. Barnes, Nat Commun 7 (2016).
[25] Y. B. Yuan and J. S. Huang, Accounts Chem Res 49, 286 (2016).
[26] G. A. Sewvandi, D. W. Hu, C. D. Chen, H. Ma, T. Kusunose, Y. Tanaka, S. Nakanishi, and Q. Feng, Phys Rev Appl 6 (2016).
[27] H. Mashiyama, Y. Kawamura, and Y. Kubota, J Korean Phys Soc 51, 850 (2007).
[28] W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Gratzel, Energ Environ Sci 8, 995 (2015).
[29] Y. C. Zhou, F. Z. Huang, Y. B. Cheng, and A. Gray-Weale, Phys Chem Chem Phys 17, 22604 (2015).
[30] Y. P. Chiu et al., Adv Mater 23, 1530 (2011).
[31] Y. P. Chiu et al., Appl Phys Lett 99 (2011).
[32] Y. P. Chiu, B. C. Chen, B. C. Huang, M. C. Shih, and L. W. Tu, Appl Phys Lett 96 (2010).
[33] B. C. Huang et al., Phys Rev Lett 109 (2012).
[34] M. C. Shih, B. C. Huang, C. C. Lin, S. S. Li, H. A. Chen, Y. P. Chiu, and C. W. Chen, Nano Lett 13, 2387 (2013).
[35] F. Besenbacher, Rep Prog Phys 59, 1737 (1996).
[36] S. Okayama, H. Bando, H. Tokumoto, and K. Kajimura, Jpn J Appl Phys 1 24, 152 (1985).
[37] G. Binnig and H. Rohrer, Ibm J Res Dev 30, 355 (1986).
[38] G. Binnig and H. Rohrer, Surf Sci 152, 17 (1985).
[39] G. Binnig and H. Rohrer, Helv Phys Acta 55, 726 (1982).
[40] L. F. Teneyck, Method Enzymol 115, 324 (1985).
[41] Q. Chen, N. De Marco, Y. Yang, T. B. Song, C. C. Chen, H. X. Zhao, Z. R. Hong, H. P. Zhou, and Y. Yang, Nano Today 10, 355 (2015).
[42] N. K. Elumalai and A. Uddin, Sol Energ Mat Sol C 157, 476 (2016).
[43] L. M. She, M. Z. Liu, and D. Y. Zhong, Acs Nano 10, 1126 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top