跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/19 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊景光
研究生(外文):Jiing-Guang Chuang
論文名稱:第一部份:利用蛋白質體學方法鑑定德國蟑螂過敏原,並分析過敏病人特異性過敏原反應圖譜第二部份:鑑定與分析德國蟑螂過敏原Bla g 9之過敏原決定點
論文名稱(外文):Part I: Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients.Part II: Identification and analysis of the allergenic determinants on the allergen Bla g 9: epitope mapping by huma
指導教授:周綠蘋周綠蘋引用關係
指導教授(外文):Lu-Ping Chow
口試委員:李後晶江伯倫顏伯勳余明俊褚志斌
口試日期:2010-10-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:146
中文關鍵詞:人類免疫球蛋白E蛋白質體學過敏過敏原過敏原決定點德國蟑螂
外文關鍵詞:allergyallergenBla g 9Blattella germanicaepitopeGerman cockroachIgEproteomics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部份:
蟑螂,目前已知可引起許多由人類免疫球蛋白E(IgE)所媒介的過敏性反應,包含有過敏性鼻炎、氣喘…等,但至目前為止,並非所有的致敏原都己被研究透澈,許多來自蟑螂的蛋白,都顯現出IgE結合活性,但僅有少部分有被進一歩分析與研究。為了釐清這一類的蟑螂過敏原,本研究中利用了二維電泳技術並配合N端定序、質譜儀等蛋白質學的方式進行分析。再進一步結合了生物資訊學中過敏原資料庫的運算,來輔助並找尋具潛力的新德國蟑螂過敏原。利用上述的方式,本篇研究中,共鑑定出10種來自德國蟑螂新的IgE結合蛋白而其中aldolase、 arginine kinase、enolase、Hsp70、TIM及vitellogenin蛋白都已在其它可導致過敏的物種,例如:塵蟎、蝦、植物花粉或真菌中,曾被鑑定為該物種的過敏蛋白。但都未曾在德國蟑螂上有過相類似的報告。另一方面,更進一步利用FARRp過敏源資料庫分析的結果也指出:arginine kinase、enolase及TIM這三個來自德國蟑螂的IgE結合蛋白,個別在各個不同致敏物種間的同源致敏蛋白,均存在著相當高的可能性是具有免疫交互作用。在本篇研究中,同時以人體皮膚試驗方式,驗証了vitellogenin蛋白在人體上,確實能引起典型的過敏反應。進一步分析個人化過敏蛋白IgE結合圖譜時也發現:在不同過敏病人上存在著個人化獨特的結合圖譜:不只在人體IgE與測試蛋白間結合的頻度,另外在結合強度上也存在著個人化的差異。這些發現,除了提供更多的蟑螂過敏病研究材料也同時提供了一個可能性,為將來對此類過敏疾病進行個人化醫療或臨床診斷提供更正確的資訊。

第二部份:
德國蟑螂是一種常見的室內吸入性過敏原,並被認為與過敏性氣喘疾病有關。由於其重要性,故常可見於現行過敏血清醫療檢驗項目中。近幾年來,由於分子生物學技術的進步,有許多的過敏原蛋白都已被基因選殖,並提供良好的平台以進行過敏原特性的分析,例如過敏原決定點的分析。本篇的主角,Bla g 9過敏原蛋白,是由德國蟑螂上,藉由蛋白質體學配合免疫學方式,新發現的過敏蛋白。並已完成基因解序及重組表現。利用陰離子交換管柱,我們也成功由德國蟑螂蟲體中,順利純化到均質化的德國蟑螂Bla g 9蛋白。由於Bla g 9蛋白在蛋白序列分析時,被認為是屬於精胺酸激酶酵素家族的一員,經活性鑑定,純化得到的Bla g 9,也的確具有精胺酸激酶的酵素活性。在後續以蟑螂過敏病人血清所進行的ELISA篩檢試驗中,也再次證實了Bla g 9確實具有結合病人血清中IgE抗體的活性,並且具有約五成的盛行率。
利用純化的美洲蟑螂精胺酸激酶過敏原(Per a 9)對Bla g 9所做的免疫抑制實驗證實了,精胺酸激酶是美洲及德國蟑螂中共通的過敏蛋白,並很有可能具有共通的過敏原決定點。為了找尋在Bla g 9上可能的過敏原決定點,我們利用了分子生物學的方式,成功將Bla g 9蛋白利用大腸桿菌分段表現,並檢測了各片段對於人類IgE抗體的結合活性。在後續研究中也發現,當Bla g 9 胜肽片段不包含氨基酸序列280-300時,對IgE抗體結合的能力會受到明顯的影響。但在利用合成胜肽分別合成兩段,包含280-295及290-305的序列時,卻無法保有IgE的結合活性。這結果暗示了在Bla g 9過敏蛋白上重要的過敏原決定點可能是屬於構型性的過敏原決定點。

Part I:
Although cockroaches are known to produce allergens that can cause IgE-mediated hypersensitivity reactions, including perennial rhinitis and asthma, the various cockroach allergens have not yet been fully studied. Many proteins from the German cockroach (B. germanica) show high IgE reactivity, but have never been comprehensively characterized. To identify these potential allergens, proteins was separated by 2-DE and IgE-binding proteins were analyzed by nanoLC-MS/MS or N-terminal sequencing analysis. Using a combination of proteomic techniques and bioinformatic allergen database analysis, we identified a total of ten new B. germanica IgE-binding proteins. Of these, aldolase, arginine kinase, enolase, Hsp70, triosephosphate isomerase (TIM), and vitellogenin have been reported as allergens in species other than B. germanica. Analysis of the FARRp allergen database indicated that arginine kinase, enolase, and TIM showed significant potential cross-reactivity with other related allergens. This study revealed that vitellogenin is an important novel B. germanica allergen. Personalized profiling and reactivity of IgE Abs against the panel of IgE-binding proteins varied between cockroach-allergic individuals. These findings make it possible to monitor the individual IgE reactivity profile of each patient and facilitate personalized immunotherapies for German cockroach allergy disorders.

Part II:
The German cockroach (B. germanica) is a well-known indoor aeroallergen, considered as one the causative agents of extrinsic bronchial asthma and frequently included in serum test panels for allergic diagnosis. Molecular characterization of allergens by recombinant DNA technology progressed rapidly during the last few years. The Bla g 9 protein, a novel allergen from B. germanica was identified by two-dimensional immunoblotting followed by the molecular cloning, and expression of this allergen as a 6 × His-tagged fusion protein in Escherichia coli. A purified Bla g 9 was obtained by anion exchange chromatography and had arginine kinase activity. It reacted with serum IgE from cockroach-allergic patients and shown high prevalence recognition. In ELISA inhibition assay, we observed that P. americana arginine kinase (Per a 9) inhibited the IgE-binding to B. germanica arginine kinase (Bla g 9), which indicated the same IgE epitope between arginine kinase from different cockroach species. In order to identify the allergenic determinants of Bla g 9, recombinant (r)Bla g 9 and fragments were also generated, and IgE-binding epitopes were assessed by ELISA. Recombinant fragmented Bla g 9 proteins not containing 280-300 amino acid residues were significantly decrease the reactivity to sera from cockroach sensitized individuals, suggesting that this region contains the IgE-binding epitope. Despite strong IgE reactivity to rBla g 9, the pooled serum from 10 cockroach-sensitized patients did not show IgE reactivity to two synthetic peptides consisting of 15 residues covering 280-305 amino acids. These results suggest the possibility that Bla g 9 may have a conformational epitope in the C-terminal region.

目錄 I
表圖目錄 IX
縮 寫 i
1. 緒 論 1
1.1. 前言 1
1.2. 過敏的因素 3
1.3. 過敏反應機制 4
1.4. 過敏原的種類 9
1.5. 過敏的預防與治療 10
1.5.1. 預防與治療 10
1.6. 蟑螂過敏原 13
1.6.1. 蟑螂與過敏 13
1.6.2. 過敏原的分子特性 15
1.6.3. 蟑螂過敏原的未來研究方向 17
第一部份:利用蛋白質體學方法鑑定德國蟑螂過敏原,並分析過敏病人特異性過敏原反應圖譜 19
中文摘要 20
Abstract 21
2. 實驗材料與實驗方法 22
2.1. 血清樣本 22
2.2. 蟑螂蟲體來源 22
2.3. 儀器及裝置 22
2.4. 大腸桿菌及質體 23
2.5. 酵素 24
2.6. 藥品與試劑組 24
2.7. 德國蟑螂過敏原之鑑定 25
2.7.1. 二次元電泳分析 25
2.7.1.1. 德國蟑螂蛋白質粗萃取物之製備 25
2.7.1.2. 蛋白質濃度的測定 26
2.7.2. 偵測 IgE結合蛋白 27
2.7.2.1. SDS聚丙烯醯胺膠體電泳分析 27
2.7.2.1.1. 板膠的裝置: 27
2.7.2.1.2. 配製separating gel: 27
2.7.2.1.3. 配製3 % stacking gel 27
2.7.2.1.4. Running buffer的製備 28
2.7.2.1.5. 蛋白質樣品的處理 28
2.7.2.1.6. 電泳之操作方法 28
2.7.2.2. 免疫轉漬分析 29
2.7.2.2.1. 蛋白質轉印 29
2.7.2.2.2. 染色與退色 30
2.7.2.2.3. 西方墨點法 30
2.7.2.3. 二維電泳分析 31
2.7.2.3.1. IPG電泳膠片之重新水合化 31
2.7.2.3.2. 第一維的IEF分析 32
2.7.2.3.3. 第二維的SDS-PAGE分析 32
2.7.2.3.4. 免疫轉漬分析 33
2.7.3. 蛋白質定序分析 33
2.7.4. 質譜分析 34
2.7.4.1. In-gel digestion 34
2.7.4.1.1. 還原及 4-vinylpyridine基化反應 34
2.7.4.1.2. 膠體原位酵素切割 34
2.7.4.1.3. 萃取切割片段 34
2.7.5. 利用液相層析串聯式質譜儀進行蛋白質鑑定分析 35
2.7.5.1. 胜肽樣品的製備 35
2.7.5.2. 液相層析進樣 35
2.7.5.3. 電灑-四極棒-飛行式質譜分析 36
2.7.6. 德國蟑螂過敏原之選殖 36
2.7.6.1. RNA的製備及電泳 36
2.7.6.1.1.純化total RNA 36
2.7.6.1.2. RNA電泳 37
2.7.6.1.2.1. 配置10 × MOPS buffer 37
2.7.6.1.2.2. 配置loading dye 37
2.7.6.1.2.3. 純化mRNA 38
2.7.7. 建構cDNA library 38
2.7.7.1. 合成第一股cDNA 39
2.7.7.2. 合成第二股cDNA 39
2.7.7.3. Adaptor接合反應 40
2.7.7.4. 標的蛋白質基因的選殖及Rapid Amplification of cDNA Ends (RACE) 40
2.7.8. DNA電泳 40
2.7.8.1. 20 × TAE buffer的製備 40
2.7.8.2. 分析 agarose gel 41
2.7.8.3. 自瓊膠電泳片中純化PCR產物 41
2.7.8.4. pGEM-T Easy Vector的接合反應 41
2.7.8.5. 大腸桿菌轉型作用 42
2.7.8.5.1. Competent cells之製備 42
2.7.8.5.2. 轉形作用之步驟 42
2.7.8.5.3. 轉形基因庫之篩選 43
2.7.8.5.4. 微量抽取質體DNA 43
2.7.8.5.5. 同源性蛋白質之搜尋與排比 44
2.7.9. 利用過敏原資料庫進行致敏性評估 44
2.7.10. 蟑螂過敏原之純化 45
2.7.10.1. 萃取蟑螂蛋白質 45
2.7.11. 蟑螂過敏原之免疫特性分析 46
2.7.11.1. 個人化IgE抗體育過敏原蛋白結合圖譜分析 46
2.7.11.2. 皮膚測試反應 47
3. 結果 48
3.1. 以一維及二維電泳方式,偵測IgE結合蛋白 48
3.2. 蛋白身份鑑定結果 48
3.3. 線上過敏原資料庫分析結果 50
3.4. 過敏病人的個人化IgE抗體與過敏原結合圖譜 51
3.5. 過敏原皮膚測試 51
4. 討論 52
4.1. 蟑螂過敏原的重要性 52
4.2. 蟑螂過敏原的防治 52
4.3. 過敏病人特性分析 53
4.4. 蛋白質身份鑑定 54
4.5. 個別IgE結合蛋白特性分析 55
4.5.1. 卵黃前質蛋白(Vitellogenin) 55
4.5.2. 具交叉免疫反應過敏原潛力的蛋白 57
4.5.2.1. 精胺酸激酶(Arginine kinase) 57
4.5.2.2. 烯醇酶(Enolase) 57
4.5.2.3. 丙醣磷酸異構酶(triosephosphate isomerase, TIM) 58
4.5.2.4. 其它可能的過敏蛋白 58
4.5.2.5. 醛縮酶(aldolase) 58
4.5.2.6. 熱休克蛋白(heat shock protein) 59
4.6. 交叉免疫與過敏 59
4.7. 總結 60
第二部份:鑑定與分析德國蟑螂過敏原Bla g 9之過敏原決定點 62
中文摘要 63
Abstract 64
5. 動機與目的 65
6. 實驗材料與方法 67
6.1. 血清樣本 67
6.2. 蟑螂蟲體來源 67
6.3. 儀器及裝置 67
6.4. 大腸桿菌及質體 68
6.5. 酵素 68
6.6. 藥品與試劑組 69
6..7. 德國蟑螂之cDNA來源 70
6.8. 德國蟑螂與美洲蟑螂天然型精胺酸激酶(Arginine kinase)蛋白之純化 70
6.8.1. 蟑螂的處理 70
6.8.2. 緩衝液的製備 71
6.8.3. 粗萃與硫酸銨分劃 71
6.8.4. 陰離子交換樹酯管柱層析分離法 72
6.8.5. 西方墨點法 72
6.8.6. 利用液相層析串聯式質譜儀進行蛋白質確認分析 73
6.8.7. 德國蟑螂過敏蛋白Bla g 9之精胺酸激酶活性分析 73
6.8.8. 凝集素結合反應 74
6.8.8.1. 配置清洗緩衝液 74
6.8.8.2. 製備明膠填塞緩衝液 74
6.8.8.3. 製備凝集素反應液 75
6.8.8.4. 製備AEC呈色反應液 75
6.8.8.5. 凝集素結合反應 75
6.9. 分段選殖與表現德國蟑螂過敏原-Bla g 9 76
6.9.1. 德國蟑螂過敏原重組胜肽 rBla g 9 各重組胜肽片段之表現與純化 76
6.9.1.1. 重組胜肽基因建構與胜肽表現 76
6.9.1.1.1. 標的基因的 PCR 增幅 76
6.9.1.1.2. 選殖基因DNA片段與pQE30選殖質體的處理 77
6.9.1.1.3. 接合反應 77
6.9.1.2. 在大腸桿菌表現 6 × His-tagged peptide 78
6.9.1.3. 重組胜肽的純化 78
6.9.1.3.1. 配製鎳離子親合性管柱 78
6.9.1.3.2. 6 × His-tagged recombinant (r)Bla g 9 和各胜肽片段的純化 79
6.9.2. Tricine-SDS 聚丙烯醯胺膠體電泳分析 80
6.9.2.1. 配製 separating gel 80
6.9.2.2. 配製 spacer gel 80
6.9.2.3. 配製 stacking gel 80
6.9.2.4 電泳之操作 80
6.10. ELISA(Enzyme-linked immunosorbent assay)與ELISA抑制效應分析 81
6.10.1. ELISA篩檢試驗 81
6.10.2. 粗萃取蛋白的ELISA抑制反應試驗 82
6.10.3. ELISA 交叉反應抑制分析 82
6.10.4. 利用ELISA篩檢試驗各德國蟑螂Bla g 9重組或生合成胜肽片段與人類IgE結合能力 83
6.11. 德國蟑螂過敏原蛋白質Bla g 9 的分子模擬 83
6.11.1. 同源性蛋白之搜尋與排比 83
6.11.1.1 蛋白結構模板搜尋 83
6.11.1.2 相似序列的排比工作 84
6.11.1.3 三維立體結構之分子模擬 84
6.11.1.4 重要抗原決定點胜肽片段之呈現 84
7. 結果 86
7.1. 德國蟑螂過敏原Bla g 9之序列比對分析 86
7.2. 德國蟑螂與美洲蟑螂精胺酸激酶(Arginine kinase)之純化 86
7.3. 利用液相層析串聯式質譜儀進行蛋白質確認與N端蛋白質序列質量圖譜分析 87
7.4. 德國蟑螂Bla g 9之免疫特性分析 88
7.4.1. 病人間盛行率ELISA篩檢試驗 88
7.4.2. Bla g 9對德國蟑螂粗萃取蛋白的IgE結合抑制反應 88
7.4.3. ELISA交叉反應抑制分析 89
7.5. 利用二維電泳與凝集素結合法進行德國蟑螂過敏原Bla g 9的糖蛋白分析 89
7.6. 德國蟑螂過敏原Bla g 9人類IgEs抗體抗原決定基選殖與分析 90
7.6.1. 大片段過敏原決定點辨識圖譜 90
7.6.2. 小片段過敏原決定點辨識圖譜 90
7.7. 三維立體結構之分子模擬 91
7.8. 人類B 細胞過敏原決定點立體位置之呈現 91
8. 討論 93
8.1. 精胺酸激酶過敏原的重要性 93
8.2. 精胺酸激酶的免疫交叉反應 94
8.3. Bla g 9的三級結構預測與過敏原決定點分析 95
9. 參考文獻 100
10、附錄 118


[1] Saito, H., Abe, J., Matsumoto, K., Allergy-related genes in microarray: an update review. J Allergy Clin Immunol 2005, 116, 56-59.
[2] Vercelli, D., Genetic regulation of IgE responses: Achilles and the tortoise. J Allergy Clin Immunol 2005, 116, 60-64.
[3] Noguchi, E., Arinami, T., Candidate genes for atopic asthma: current results from genome screens. Am J Pharmacogenomics 2001, 1, 251-261.
[4] Lee, Y. L., Li, C. W., Sung, F. C., Yu, H. S., et al., Environmental factors, parental atopy and atopic eczema in primary-school children: a cross-sectional study in Taiwan. Br J Dermatol 2007, 157, 1217-1224.
[5] Chiang, C. H., Wu, K. M., Wu, C. P., Yan, H. C., Perng, W. C., Evaluation of risk factors for asthma in Taipei City. J Chin Med Assoc 2005, 68, 204-209.
[6] Hwang, C. Y., Chen, Y. J., Lin, M. W., Chen, T. J., et al., Prevalence of atopic dermatitis, allergic rhinitis and asthma in taiwan: a national study 2000 to 2007. Acta Derm Venereol 2010, 90, 589-594.
[7] Bousquet, J., Dahl, R., Khaltaev, N., Global alliance against chronic respiratory diseases. Allergy 2007, 62, 216-223.
[8] Warner, J. O., Kaliner, M. A., Crisci, C. D., Del Giacco, S., et al., Allergy practice worldwide: a report by the World Allergy Organization Specialty and Training Council. Int Arch Allergy Immunol 2006, 139, 166-174.
[9] Hsieh, K. H., Shen, J. J., Prevalence of childhood asthma in Taipei, Taiwan, and other Asian Pacific countries. J Asthma 1988, 25, 73-82.
[10] Sicherer, S. H., Advances in anaphylaxis and hypersensitivity reactions to foods, drugs, and insect venom. J Allergy Clin Immunol 2003, 111, S829-834.
[11] Johansson, S. G., Bieber, T., Dahl, R., Friedmann, P. S., et al., Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 2004, 113, 832-836.
[12] Holgate, S. T., The epidemic of allergy and asthma. Nature 1999, 402, B2-4.
[13] Ober, C., Hoffjan, S., Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun 2006, 7, 95-100.
[14] Blumenthal, M. N., The role of genetics in the development of asthma and atopy. Curr Opin Allergy Clin Immunol 2005, 5, 141-145.
[15] Hoffjan, S., Ober, C., Present status on the genetic studies of asthma. Curr Opin Immunol 2002, 14, 709-717.
[16] Marsh, D. G., Neely, J. D., Breazeale, D. R., Ghosh, B., et al., Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994, 264, 1152-1156.
[17] Baldini, M., Lohman, I. C., Halonen, M., Erickson, R. P., et al., A Polymorphism in the 5'' flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999, 20, 976-983.
[18] Spergel, J. M., From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol 2010, 105, 99-106; quiz 107-109, 117.
[19] Macdonald, T. T., Monteleone, G., Immunity, inflammation, and allergy in the gut. Science 2005, 307, 1920-1925.
[20] Liu, A. H., Szefler, S. J., Advances in childhood asthma: hygiene hypothesis, natural history, and management. J Allergy Clin Immunol 2003, 111, S785-792.
[21] Busse, W. W., Rosenwasser, L. J., Mechanisms of asthma. J Allergy Clin Immunol 2003, 111, S799-804.
[22] Liu, N., Ohnishi, N., Ni, L., Akira, S., Bacon, K. B., CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol 2003, 4, 687-693.
[23] Chinen, J., Shearer, W. T., Basic and clinical immunology. J Allergy Clin Immunol 2003, 111, S813-818.
[24] Coombs, R. P. A. G., P. G. H., Clinical Aspects of Immunology 1963, 317-337.
[25] Corry, D. B., Kheradmand, F., Induction and regulation of the IgE response. Nature 1999, 402, B18-23.
[26] Turner, H., Kinet, J. P., Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 1999, 402, B24-30.
[27] Barnes, P. J., Pathophysiology of asthma. Br J Clin Pharmacol 1996, 42, 3-10.
[28] Anderson, G. P., Coyle, A. J., TH2 and ''TH2-like'' cells in allergy and asthma: pharmacological perspectives. Trends Pharmacol Sci 1994, 15, 324-332.
[29] Scharenberg, A. M., Kinet, J. P., Initial events in Fc epsilon RI signal transduction. J Allergy Clin Immunol 1994, 94, 1142-1146.
[30] Chang, T. W., The pharmacological basis of anti-IgE therapy. Nat Biotechnol 2000, 18, 157-162.
[31] Nakae, S., Suto, H., Kakurai, M., Sedgwick, J. D., et al., Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc Natl Acad Sci U S A 2005, 102, 6467-6472.
[32] Mizue, Y., Ghani, S., Leng, L., McDonald, C., et al., Role for macrophage migration inhibitory factor in asthma. Proc Natl Acad Sci U S A 2005, 102, 14410-14415.
[33] Sampson, H. A., Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol 1999, 103, 717-728.
[34] Arshad, S. H., Primary prevention of asthma and allergy. J Allergy Clin Immunol 2005, 116, 3-14; quiz 15.
[35] Burks, W., Bannon, G., Lehrer, S. B., Classic specific immunotherapy and new perspectives in specific immunotherapy for food allergy. Allergy 2001, 56 Suppl 67, 121-124.
[36] Wild, L. G., Lehrer, S. B., Immunotherapy for food allergy. Curr Allergy Rep 2001, 1, 48-53.
[37] Oppenheimer, J. J., Nelson, H. S., Bock, S. A., Christensen, F., Leung, D. Y., Treatment of peanut allergy with rush immunotherapy. J Allergy Clin Immunol 1992, 90, 256-262.
[38] Nelson, H. S., Lahr, J., Rule, R., Bock, A., Leung, D., Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract. J Allergy Clin Immunol 1997, 99, 744-751.
[39] Norman, P. S., Ohman, J. L., Jr., Long, A. A., Creticos, P. S., et al., Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med 1996, 154, 1623-1628.
[40] Pene, J., Desroches, A., Paradis, L., Lebel, B., et al., Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats. J Allergy Clin Immunol 1998, 102, 571-578.
[41] Fellrath, J. M., Kettner, A., Dufour, N., Frigerio, C., et al., Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J Allergy Clin Immunol 2003, 111, 854-861.
[42] Tarzi, M., Klunker, S., Texier, C., Verhoef, A., et al., Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin Exp Allergy 2006, 36, 465-474.
[43] Stanley, J. S., King, N., Burks, A. W., Huang, S. K., et al., Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 1997, 342, 244-253.
[44] Ferreira, F., Ebner, C., Kramer, B., Casari, G., et al., Modulation of IgE reactivity of allergens by site-directed mutagenesis: potential use of hypoallergenic variants for immunotherapy. FASEB J 1998, 12, 231-242.
[45] Purohit, A., Niederberger, V., Kronqvist, M., Horak, F., et al., Clinical effects of immunotherapy with genetically modified recombinant birch pollen Bet v 1 derivatives. Clin Exp Allergy 2008, 38, 1514-1525.
[46] Spiegelberg, H. L., Orozco, E. M., Roman, M., Raz, E., DNA immunization: a novel approach to allergen-specific immunotherapy. Allergy 1997, 52, 964-970.
[47] Creticos, P. S., Schroeder, J. T., Hamilton, R. G., Balcer-Whaley, S. L., et al., Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med 2006, 355, 1445-1455.
[48] Sato, Y., Roman, M., Tighe, H., Lee, D., et al., Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996, 273, 352-354.
[49] Bohle, B., Jahn-Schmid, B., Maurer, D., Kraft, D., Ebner, C., Oligodeoxynucleotides containing CpG motifs induce IL-12, IL-18 and IFN-gamma production in cells from allergic individuals and inhibit IgE synthesis in vitro. Eur J Immunol 1999, 29, 2344-2353.
[50] Nelson, H. S., Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol 2003, 111, S793-798.
[51] Tulic, M. K., Fiset, P. O., Christodoulopoulos, P., Vaillancourt, P., et al., Amb a 1-immunostimulatory oligodeoxynucleotide conjugate immunotherapy decreases the nasal inflammatory response. J Allergy Clin Immunol 2004, 113, 235-241.
[52] Kundig, T. M., Senti, G., Schnetzler, G., Wolf, C., et al., Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol 2006, 117, 1470-1476.
[53] Fahy, J. V., Fleming, H. E., Wong, H. H., Liu, J. T., et al., The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 1997, 155, 1828-1834.
[54] MacGlashan, D. W., Jr., Bochner, B. S., Adelman, D. C., Jardieu, P. M., et al., Down-regulation of Fc (epsilon) RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 1997, 158, 1438-1445.
[55] 王正雄, 徐爾烈, 羅怡珮, 德國蜚蠊(Blattella germanica L.) 之生態及室內藥劑試驗. 國立臺灣大學農學院研究報告 1987, 27, 101-117.
[56] Bernton, H. S., Brown, H., Insect Allergy--Preliminary Studies of the Cockroach. J Allergy Clin Immunol 1964, 35, 506-513.
[57] Kang, B., Vellody, D., Homburger, H., Yunginger, J. W., Cockroach cause of allergic asthma. Its specificity and immunologic profile. J Allergy Clin Immunol 1979, 63, 80-86.
[58] Wu, C. H., Lan, J. L., Cockroach hypersensitivity: isolation and partial characterization of major allergens. J Allergy Clin Immunol 1988, 82, 727-735.
[59] Lan, J. L., Lee, D. T., Wu, C. H., Chang, C. P., Yeh, C. L., Cockroach hypersensitivity: preliminary study of allergic cockroach asthma in Taiwan. J Allergy Clin Immunol 1988, 82, 736-740.
[60] Call, R. S., Smith, T. F., Morris, E., Chapman, M. D., Platts-Mills, T. A., Risk factors for asthma in inner city children. J Pediatr 1992, 121, 862-866.
[61] Gelber, L. E., Seltzer, L. H., Bouzoukis, J. K., Pollart, S. M., et al., Sensitization and exposure to indoor allergens as risk factors for asthma among patients presenting to hospital. Am Rev Respir Dis 1993, 147, 573-578.
[62] Rosenstreich, D. L., Eggleston, P., Kattan, M., Baker, D., et al., The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med 1997, 336, 1356-1363.
[63] Gold, D. R., Burge, H. A., Carey, V., Milton, D. K., et al., Predictors of repeated wheeze in the first year of life: the relative roles of cockroach, birth weight, acute lower respiratory illness, and maternal smoking. Am J Respir Crit Care Med 1999, 160, 227-236.
[64] Lehrer, S. B., Horner, W. E., Menon, P., Stankus, R. P., Comparison of cockroach allergenic activity in whole body and fecal extracts. J Allergy Clin Immunol 1991, 87, 574-580.
[65] Pomes, A., Melen, E., Vailes, L. D., Retief, J. D., et al., Novel allergen structures with tandem amino acid repeats derived from German and American cockroach. J Biol Chem 1998, 273, 30801-30807.
[66] Gore, J. C., Schal, C., Expression, production and excretion of Bla g 1, a major human allergen, in relation to food intake in the German cockroach, Blattella germanica. Med Vet Entomol 2005, 19, 127-134.
[67] Wu, C. H., Hsieh, M. J., Huang, J. H., Luo, S. F., Identification of low molecular weight allergens of American cockroach and production of monoclonal antibodies. Ann Allergy Asthma Immunol 1996, 76, 195-203.
[68] Pomes, A., Chapman, M. D., Vailes, L. D., Blundell, T. L., Dhanaraj, V., Cockroach allergen Bla g 2: structure, function, and implications for allergic sensitization. Am J Respir Crit Care Med 2002, 165, 391-397.
[69] Jeng, K. C., Liu, M. T., Wu, C. H., Wong, D. W., Lan, J. L., American cockroach Cr-PI allergen induces lymphocyte proliferation and cytokine production in atopic patients. Clin Exp Allergy 1996, 26, 349-356.
[70] Bellinghausen, I., Haringer, B., Lafargue, B., Strand, D., et al., Allergological implication of the quaternary hexameric structure of the cockroach allergen Per a 3. Clin Exp Allergy 2008, 38, 539-548.
[71] Jeong, K. Y., Lee, J., Lee, I. Y., Ree, H. I., et al., Allergenicity of recombinant Bla g 7, German cockroach tropomyosin. Allergy 2003, 58, 1059-1063.
[72] Melen, E., Pomes, A., Vailes, L. D., Arruda, L. K., Chapman, M. D., Molecular cloning of Per a 1 and definition of the cross-reactive Group 1 cockroach allergens. J Allergy Clin Immunol 1999, 103, 859-864.
[73] Arruda, L. K., Vailes, L. D., Mann, B. J., Shannon, J., et al., Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem 1995, 270, 19563-19568.
[74] Arruda, L. K., Vailes, L. D., Hayden, M. L., Benjamin, D. C., Chapman, M. D., Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 1995, 270, 31196-31201.
[75] Hindley, J., Wunschmann, S., Satinover, S. M., Woodfolk, J. A., et al., Bla g 6: a troponin C allergen from Blattella germanica with IgE binding calcium dependence. J Allergy Clin Immunol 2006, 117, 1389-1395.
[76] Arruda, L. K., Vailes, L. D., Platts-Mills, T. A., Hayden, M. L., Chapman, M. D., Induction of IgE antibody responses by glutathione S-transferase from the German cockroach (Blattella germanica). J Biol Chem 1997, 272, 20907-20912.
[77] Wu, C. H., Lee, M. F., Wang, N. M., Luo, S. F., Sequencing and immunochemical characterization of the American cockroach per a 3 (Cr-PI) isoallergenic variants. Mol Immunol 1997, 34, 1-8.
[78] Asturias, J. A., Gomez-Bayon, N., Arilla, M. C., Martinez, A., et al., Molecular characterization of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 1999, 162, 4342-4348.
[79] Sookrung, N., Chaicumpa, W., Tungtrongchitr, A., Vichyanond, P., et al., Periplaneta americana arginine kinase as a major cockroach allergen among Thai patients with major cockroach allergies. Environ Health Perspect 2006, 114, 875-880.
[80] Reese, G., Schicktanz, S., Lauer, I., Randow, S., et al., Structural, immunological and functional properties of natural recombinant Pen a 1, the major allergen of Brown Shrimp, Penaeus aztecus. Clin Exp Allergy 2006, 36, 517-524.
[81] Ayuso, R., Sanchez-Garcia, S., Lin, J., Fu, Z., et al., Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age. J Allergy Clin Immunol 2010, 125, 1286-1293 e1283.
[82] Huntley, J. F., Machell, J., Nisbet, A. J., Van den Broek, A., et al., Identification of tropomyosin, paramyosin and apolipophorin/vitellogenin as three major allergens of the sheep scab mite, Psoroptes ovis. Parasite Immunol 2004, 26, 335-342.
[83] Santos, A. B., Chapman, M. D., Aalberse, R. C., Vailes, L. D., et al., Cockroach allergens and asthma in Brazil: identification of tropomyosin as a major allergen with potential cross-reactivity with mite and shrimp allergens. J Allergy Clin Immunol 1999, 104, 329-337.
[84] Reese, G., Ayuso, R., Lehrer, S. B., Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol 1999, 119, 247-258.
[85] Leung, P. S., Chen, Y. C., Gershwin, M. E., Wong, S. H., et al., Identification and molecular characterization of Charybdis feriatus tropomyosin, the major crab allergen. J Allergy Clin Immunol 1998, 102, 847-852.
[86] Asturias, J. A., Arilla, M. C., Gomez-Bayon, N., Martinez, A., et al., Sequencing and high level expression in Escherichia coli of the tropomyosin allergen (Der p 10) from Dermatophagoides pteronyssinus. Biochim Biophys Acta 1998, 1397, 27-30.
[87] Aki, T., Kodama, T., Fujikawa, A., Miura, K., et al., Immunochemical characterization of recombinant and native tropomyosins as a new allergen from the house dust mite, Dermatophagoides farinae. J Allergy Clin Immunol 1995, 96, 74-83.
[88] Shanti, K. N., Martin, B. M., Nagpal, S., Metcalfe, D. D., Rao, P. V., Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes. J Immunol 1993, 151, 5354-5363.
[89] Fan, Y., Gore, J. C., Redding, K. O., Vailes, L. D., et al., Tissue localization and regulation by juvenile hormone of human allergen Bla g 4 from the German cockroach, Blattella germanica (L.). Insect Mol Biol 2005, 14, 45-53.
[90] Tan, Y. W., Chan, S. L., Ong, T. C., Yit le, Y., et al., Structures of two major allergens, Bla g 4 and Per a 4, from cockroaches and their IgE binding epitopes. J Biol Chem 2009, 284, 3148-3157.
[91] Jeong, K. Y., Jeong, K. J., Yi, M. H., Lee, H., et al., Allergenicity of sigma and delta class glutathione S-transferases from the German cockroach. Int Arch Allergy Immunol 2009, 148, 59-64.
[92] Valenta, R., Twaroch, T., Swoboda, I., Component-resolved diagnosis to optimize allergen-specific immunotherapy in the Mediterranean area. J Investig Allergol Clin Immunol 2007, 17 Suppl 1, 36-40.
[93] de Graaf, D. C., Aerts, M., Danneels, E., Devreese, B., Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteomics 2009, 72, 145-154.
[94] WHO, Evaluation of the allergenicity of genetically modified foods. Reprot of a Joint FAO/WHO Expert Consultation on Allergenicity of Foods Derived from Biotechnology 2001, 22-25.
[95] Pomes, A., Vailes, L. D., Helm, R. M., Chapman, M. D., IgE reactivity of tandem repeats derived from cockroach allergen, Bla g 1. Eur J Biochem 2002, 269, 3086-3092.
[96] Satinover, S. M., Reefer, A. J., Pomes, A., Chapman, M. D., et al., Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. J Allergy Clin Immunol 2005, 115, 803-809.
[97] Yu, C. J., Lin, Y. F., Chiang, B. L., Chow, L. P., Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J Immunol 2003, 170, 445-453.
[98] Arruda, L. K., Chapman, M. D., The role of cockroach allergens in asthma. Curr Opin Pulm Med 2001, 7, 14-19.
[99] Eggleston, P. A., Cockroach allergen abatement: the good, the bad, and the ugly. J Allergy Clin Immunol 2003, 112, 265-267.
[100] Arruda, L. K., Vailes, L. D., Ferriani, V. P., Santos, A. B., et al., Cockroach allergens and asthma. J Allergy Clin Immunol 2001, 107, 419-428.
[101] Chew, G. L., Perzanowski, M. S., Canfield, S. M., Goldstein, I. F., et al., Cockroach allergen levels and associations with cockroach-specific IgE. J Allergy Clin Immunol 2008, 121, 240-245.
[102] Nakazawa, T., Satinover, S. M., Naccara, L., Goddard, L., et al., Asian ladybugs (Harmonia axyridis): a new seasonal indoor allergen. J Allergy Clin Immunol 2007, 119, 421-427.
[103] Lehrer, S. B., Ayuso, R., Reese, G., Seafood allergy and allergens: a review. Mar Biotechnol (NY) 2003, 5, 339-348.
[104] Jeong, K. Y., Yi, M. H., Jeong, K. J., Lee, H., et al., Sequence diversity of the Bla g 4 cockroach allergen, homologous to lipocalins, from Blattella germanica. Int Arch Allergy Immunol 2009, 148, 339-345.
[105] Yagami, T., Haishima, Y., Tsuchiya, T., Tomitaka-Yagami, A., et al., Proteomic analysis of putative latex allergens. Int Arch Allergy Immunol 2004, 135, 3-11.
[106] Kao, S. H., Su, S. N., Huang, S. W., Tsai, J. J., Chow, L. P., Sub-proteome analysis of novel IgE-binding proteins from Bermuda grass pollen. Proteomics 2005, 5, 3805-3813.
[107] Millea, K. M., Krull, I. S., Cohen, S. A., Gebler, J. C., Berger, S. J., Integration of multidimensional chromatographic protein separations with a combined "top-down" and "bottom-up" proteomic strategy. J Proteome Res 2006, 5, 135-146.
[108] Chiu, L. L., Lee, K. L., Lin, Y. F., Chu, C. Y., et al., Secretome analysis of novel IgE-binding proteins from Pencillium citrinum. Proteomics Clinical Applications 2008, 2, 33-45.
[109] Sotkovsky, P., Hubalek, M., Hernychova, L., Novak, P., et al., Proteomic analysis of wheat proteins recognized by IgE antibodies of allergic patients. Proteomics 2008, 8, 1677-1691.
[110] Yun, Y. Y., Ko, S. H., Park, J. W., Lee, I. Y., et al., Comparison of allergenic components between German cockroach whole body and fecal extracts. Ann Allergy Asthma Immunol 2001, 86, 551-556.
[111] Gore, J. C., Schal, C., Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). J Med Entomol 2004, 41, 953-960.
[112] Comas, D., Piulachs, M. D., Belles, X., Vitellogenin of Blattella germanica (L.) (Dictyoptera, blattellidae): nucleotide sequence of the cDNA and analysis of the protein primary structure. Arch Insect Biochem Physiol 2000, 45, 1-11.
[113] Martin, D., Piulachs, M. D., Comas, D., Belles, X., Isolation and sequence of a partial vitellogenin cDNA from the cockroach, Blattella germanica (L.) (Dictyoptera, Blattellidae), and characterization of the vitellogenin gene expression. Arch Insect Biochem Physiol 1998, 38, 137-146.
[114] Epton, M. J., Dilworth, R. J., Smith, W., Hart, B. J., Thomas, W. R., High-molecular-weight allergens of the house dust mite: an apolipophorin-like cDNA has sequence identity with the major M-177 allergen and the IgE-binding peptide fragments Mag1 and Mag3. Int Arch Allergy Immunol 1999, 120, 185-191.
[115] Kondo, Y., Kakami, M., Koyama, H., Yasuda, T., et al., IgE Cross-reactivity between Fish Roe (Salmon, Herring and Pollock) and Chicken Egg in Patients Anaphylactic to Salmon Roe. Allergology International 2005, 54, 317-323.
[116] Binder, M., Mahler, V., Hayek, B., Sperr, W. R., et al., Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J Immunol 2001, 167, 5470-5477.
[117] Huang, C. H., Liew, L. M., Mah, K. W., Kuo, I. C., et al., Characterization of glutathione S-transferase from dust mite, Der p 8 and its immunoglobulin E cross-reactivity with cockroach glutathione S-transferase. Clin Exp Allergy 2006, 36, 369-376.
[118] Lai, H. Y., Tam, M. F., Tang, R. B., Chou, H., et al., cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus. Int Arch Allergy Immunol 2002, 127, 181-190.
[119] Posch, A., Chen, Z., Wheeler, C., Dunn, M. J., et al., Characterization and identification of latex allergens by two-dimensional electrophoresis and protein microsequencing. J Allergy Clin Immunol 1997, 99, 385-395.
[120] Ito, K., Ishiguro, A., Kanbe, T., Tanaka, K., Torii, S., Detection of IgE antibody against Candida albicans enolase and its crossreactivity to Saccharomyces cerevisiae enolase. Clin Exp Allergy 1995, 25, 522-528.
[121] Kortekangas-Savolainen, O., Kalimo, K., Lammintausta, K., Savolainen, J., IgE-binding components of baker''s yeast (Saccharomyces cerevisiae) recognized by immunoblotting analysis. Simultaneous IgE binding to mannan and 46-48 kD allergens of Saccharomyces cerevisiae and Candida albicans. Clin Exp Allergy 1993, 23, 179-184.
[122] Simon-Nobbe, B., Probst, G., Kajava, A. V., Oberkofler, H., et al., IgE-binding epitopes of enolases, a class of highly conserved fungal allergens. J Allergy Clin Immunol 2000, 106, 887-895.
[123] Hoppe, S., H., S., A., P., Identification of a 28 kDa lychee allergen as a triose-phosphate isomerase. Food and Agricultural Immunology 2006, 17, 9-19.
[124] Chen, Y. H., Lee, M. F., Lan, J. L., Chen, C. S., et al., Hypersensitivity to Forcipomyia taiwana (biting midge): clinical analysis and identification of major For t 1, For t 2 and For t 3 allergens. Allergy 2005, 60, 1518-1523.
[125] Rozynek, P., Sander, I., Appenzeller, U., Crameri, R., et al., TPIS--an IgE-binding wheat protein. Allergy 2002, 57, 463.
[126] Posch, A., Chen, Z., Dunn, M. J., Wheeler, C. H., et al., Latex allergen database. Electrophoresis 1997, 18, 2803-2810.
[127] Baur, X., Posch, A., Characterized allergens causing bakers'' asthma. Allergy 1998, 53, 562-566.
[128] Lin, Y. F., Chen, C. Y., Tsai, M. H., Wu, M. S., et al., Duodenal ulcer-related antigens from Helicobacter pylori: immunoproteome and protein microarray approaches. Mol Cell Proteomics 2007, 6, 1018-1026.
[129] Chiung, Y. M., Lin, B. L., Yeh, C. H., Lin, C. Y., Heat shock protein (hsp 70)-related epitopes are common allergenic determinants for barley and corn antigens. Electrophoresis 2000, 21, 297-300.
[130] Lopez-Sanchez, M. J., Neef, A., Pereto, J., Patino-Navarrete, R., et al., Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet 2009, 5, e1000721.
[131] Schou, C., Lind, P., Fernandez-Caldas, E., Lockey, R. F., Lowenstein, H., Identification and purification of an important cross-reactive allergen from American (Periplaneta americana) and German (Blattella germanica) cockroach. J Allergy Clin Immunol 1990, 86, 935-946.
[132] Sharma, V., Singh, B. P., Gaur, S. N., Arora, N., Molecular and immunological characterization of cytochrome c: a potential cross-reactive allergen in fungi and grasses. Allergy 2008, 63, 189-197.
[133] Brown, A. E., France, R. M., Grossman, S. H., Purification and characterization of arginine kinase from the American cockroach (Periplaneta americana). Arch Insect Biochem Physiol 2004, 56, 51-60.
[134] Wu, C. H., Luo, S. F., Wong, D. W., Analysis of cross-reactive allergens from American and German cockroaches by human IgE. Allergy 1997, 52, 411-416.
[135] Valenta, R., Ferreira, F., Focke-Tejkl, M., Linhart, B., et al., From allergen genes to allergy vaccines. Annu Rev Immunol 2010, 28, 211-241.
[136] Mo, J. H., Park, S. W., Rhee, C. S., Takabayashi, K., et al., Suppression of allergic response by CpG motif oligodeoxynucleotide-house-dust mite conjugate in animal model of allergic rhinitis. Am J Rhinol 2006, 20, 212-218.
[137] More, D., Nugent, J., Hagan, L., Demain, J., et al., Identification of allergens in the venom of the common striped scorpion. Ann Allergy Asthma Immunol 2004, 93, 493-498.
[138] Wu, C. H., Lee, M. F., Yang, J. S., Tseng, C. Y., IgE-binding epitopes of the American cockroach Per a 1 allergen. Mol Immunol 2002, 39, 459-464.
[139] Wu, C. H., Lee, M. F., Tseng, C. Y., IgE-binding epitopes of the American cockroach Per a 3 allergen. Allergy 2003, 58, 986-992.
[140] Jeong, K. J., Jeong, K. Y., Kim, C. R., Yong, T. S., IgE-binding epitope analysis of Bla g 5, the German cockroach allergen. Protein Pept Lett 2010, 17, 573-577.
[141] Un, S., Jeong, K. Y., Yi, M. H., Kim, C. R., Yong, T. S., IgE binding epitopes of Bla g 6 from German cockroach. Protein Pept Lett 2010, 17, 1170-1176.
[142] Pereira, C. A., Alonso, G. D., Paveto, M. C., Iribarren, A., et al., Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J Biol Chem 2000, 275, 1495-1501.
[143] Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., et al., Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc Natl Acad Sci U S A 1998, 95, 8449-8454.
[144] Guex, N., Peitsch, M. C., SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18, 2714-2723.
[145] Lin, R. Y., Shen, H. D., Han, S. H., Identification and characterization of a 30 kD major allergen from Parapenaeus fissurus. J Allergy Clin Immunol 1993, 92, 837-845.
[146] Seiberler, S., Scheiner, O., Kraft, D., Lonsdale, D., Valenta, R., Characterization of a birch pollen allergen, Bet v III, representing a novel class of Ca2+ binding proteins: specific expression in mature pollen and dependence of patients'' IgE binding on protein-bound Ca2+. EMBO J 1994, 13, 3481-3486.
[147] Anosike, E. O., Moreland, B. H., Watts, D. C., Evolutionary variation between a monomer and a dimer arginine kinase. Purification of the enzyme from Holothuria forskali and a comparison of some properties with that from Homarus vulgaris. Biochem J 1975, 145, 535-543.
[148] Rosenthal, G. A., Dahlman, D. L., Robinson, G. W., L-Arginine kinase from tobacco hornworm, Manduca sexta (L.). Purification, properties, and interaction with L-canavanine. J Biol Chem 1977, 252, 3679-3683.
[149] Paar, J. M., Harris, N. T., Holowka, D., Baird, B., Bivalent ligands with rigid double-stranded DNA spacers reveal structural constraints on signaling by Fc epsilon RI. J Immunol 2002, 169, 856-864.
[150] Vrtala, S., Hirtenlehner, K., Vangelista, L., Pastore, A., et al., Conversion of the major birch pollen allergen, Bet v 1, into two nonanaphylactic T cell epitope-containing fragments: candidates for a novel form of specific immunotherapy. J Clin Invest 1997, 99, 1673-1681.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 大蒜與百慕達草花粉過敏原之鑑定與其免疫性質研究
2. 煙色麴菌重要過敏原鹼性絲胺酸水解酵素的鑑定及重組蛋白質的表現,並分析其免疫球蛋白E與兔子多株抗體的抗原決定點
3. 攜帶CemX胜肽片段的B型肝炎核心抗原之類病毒顆粒可誘導BALB/c小鼠產生抗體毒殺表現人類膜鑲嵌型IgE的B淋巴球
4. 高雄市國小學童家戶空氣中塵蟎過敏原濃度之探討
5. 第一部份:結合蛋白質體學與生物資訊學工具來分析Pen c 13蛋白水解酶誘導過敏性氣道發炎小鼠模式之肺部蛋白質體差異;第二部份:Pen c 13之B細胞抗原決定位的低過敏性融合蛋白運用於過敏原特異性免疫治療法
6. 調適性類神經模糊推論系統(ANFIS)於台灣族群幼兒氣喘易感性基因之關連性預測
7. 標的表現IgE的B淋巴細胞以調控IgE之生成
8. 腐食酪蟎穀胱甘肽硫轉移酶過敏原之純化與其免疫性質研究
9. 台灣南部地區大氣中構樹花粉濃度對呼吸道及過敏性疾病的影響
10. 第一部份:以蛋白質體學法鑑定分析草蝦過敏原,並探討其免疫特性第二部份:點青黴菌與黃麴黴菌主要過敏原絲胺酸蛋白質水解酶的鑑定,選殖與免疫特性分析
11. 以標的B細胞上的mIgE調控IgE
12. 探討家塵過敏原Derp2所引起的Th2反應對寄主清除胞內菌能力的影響
13. 製備美國蟑螂過敏原C3單株抗體及其抗原結合簇之定位
14. 美國蟑螂主要過敏原p72之表現及找出IgE抗原結合區
15. 人類過敏及非過敏個體中IgEVH4核酸序列分析