跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴岳淵
研究生(外文):Yue-YuanLai
論文名稱:以注漿成形法製備透光氧化鋁陶瓷
論文名稱(外文):Preparation of translucent polycrystalline alumina ceramic through slip casting
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:多晶氧化鋁注漿成形
外文關鍵詞:polycrystallinealuminaslip casting
相關次數:
  • 被引用被引用:4
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用注漿成形法製作出燒結多晶氧化鋁所需之生胚,並且在不同溫度下燒結探討其特性。
漿料以去離水與氧化鋁粉末進行混合,固定添加500 ppm Mg2+。Mg2+添加會造成漿料黏度上升,因此需要加入分散劑 (PAA-NH4) 讓漿料黏度下降。經過測試,漿料在添加4 wt%有最佳之流動性。另外利用3 mm之ZrO2磨球進行分散及解凝聚作業,4 h為最佳球磨時間。漿料製成生胚後,經過800oC持溫12 h之預燒結,可得到相對密度 〉 65%之生胚。
預燒結之目的除了先行分解硝酸鎂與分散劑 (PAA-NH4) 外,消除極細顆粒為另一目的。實驗在800oC分別持溫1、6、12、18與24 h進行預燒結,並且統一在燒結溫度1550oC下分別持溫0.5、1與3 h。可觀察到預燒結1與6 h樣品之密度會在初期提升較快,但持溫過1 h後會有被反超的情形。這係因為細顆粒在燒結初期快速緻密化,但到後期孔洞之殘留造成緻密化速率減緩所導致。從燒結收縮曲線也能觀察到預燒結對燒結行為之影響。
多晶氧化鋁燒結體觀察在空氣氣氛在燒結溫度1450-1650oC進行。隨著燒結溫度與時間增加,樣品之密度最高能達到99.5%。如考慮晶粒需維持在1 μm,樣品最大密度為99.3%。從測試樣品中發現,當密度大於98%,密度與破裂韌性數值會趨於一定之數值 (硬度:19.6 GPa,破裂韌性:5.5 MPa x m1/2)。
而在1700oC真空環境條件下燒結1 h,可得到可透光之樣品。其直線透光率為3.4 %,密度為99.8%,晶粒平均尺寸為1.4 μm。

In the present study, green bodies were prepared by slip casting that involves sintering of polycrystalline alumina. The sintering characteristics of the polycrystalline alumina at different temperatures were investigated.
First, deionized water and alumina powder were mixed into a slurry, and then 500 ppm Mg2+ solution was added. The addition of Mg2+ increased the viscosity of the slurry; thus, a dispersant was needed to decrease the slurry viscosity. After tests, addition of dispersant to 4 wt% of the slurry was found to result in optimum mobility. When 3 mm ZrO2 grinding balls were used during dispersion and deagglomeration, the optimum milling time was found to be 4 h. The slurry was then converted to green bodies; pre-heating them at 800°C for 12 h increased their relative density to 〉65%.
Pre-sintering eliminated fine grains and decomposed magnesium nitrate and the dispersant, PAA-NH4. Pre-heating experiments were conducted at 800°C for 1, 6, 12, 18, and 24 h, and sintering was conducted at 1550°C for 0.5, 1, and 3 h. The density of samples pre-heated for 1 and 6 h rapidly increased at the beginning of sintering. However, the density of the samples pre-heated for 12 h and sintered for 1 h exceeded that of the samples pre-heated for 1 and 6 h because fine particles became rapidly densified at the early stage of sintering, and the residual holes resulted in a low densification rate at the final stage of sintering. From the sintering shrinkage curve, the effect of pre-heating on sintering behavior can be observed.
Polycrystalline alumina was sintered in air at a temperature of 1450–1650°C. With increasing sintering temperature and time, the density of the sample reached 99.5%. Because of the requirement of maintaining crystal grains at 1 μm, the maximum density of the samples was 99.3%. When the density of the samples was 〉98%, their hardness and fracture toughness tended to be 19.6 GPa and 5.5 MPa × m1/2, respectively.
Samples sintered under vacuum at 1700°C for 1 h were translucent. Their straight light transmittance, density, and average grain size were 3.4%, 99.8%, and 1.4 μm, respectively.

摘要 I
Abstract II
致謝 XII
目錄 XIII
圖目錄 XVI
表目錄 XXI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究目的 2
第二章 文獻回顧 3
2-1 氧化鋁之基本特性 3
2-2 透光多晶氧化鋁 5
2-3 透光多晶氧化鋁之原料需求 10
2-3-1 氧化鋁粉體特性 10
2-3-2 燒結助劑 10
2-4 注漿成形 11
2-4-1 陶瓷成形技術 11
2-4-2 注漿成形流程 12
2-4-3 漿料顆粒分散與凝聚 13
2-4-4 聚丙烯酸銨 14
2-5透光多晶氧化鋁燒結 21
2-5-1 燒結 21
2-5-2 預燒結 24
2-5-3 燒結氣氛 26
2-5-4 特殊設備燒結 27
第三章 實驗方法與分析 28
3-1 漿料備製 28
3-1-1 起始粉末 28
3-1-2 助燒結劑 29
3-1-3 分散劑與pH調整 29
3-1-4 pH調整 29
3-1-5 石膏模製成 29
3-1-6 注漿成形流程 30
3-2 起始粉末與漿料性質分析 32
3-2-1 X光繞射分析 32
3-2-2 X光螢光分析 32
3-2-3 比表面積分析分析 32
3-2-4氧化鋁漿料黏度分析 32
3-2-5 Zeta potential 電位分析 33
3-2-6 生胚密度分析 33
3-2-7 生胚微結構分析 33
3-3 胚體燒結 34
3-3-1 預燒結之差異性 34
3-3-2燒結之差異性 35
3-4 燒結體分析 36
3-4-1 燒結收縮量測 36
3-4-2 透光度 36
3-4-3 硬度與壓痕破裂 36
3-4-4 燒結體密度分析 39
3-4-5 燒結體微結構分析 39
第四章 結果與討論 40
4-1 起始粉末分析 40
4-2 漿料與生胚分析 43
4-2-1 漿料分析 43
4-2-2 生胚分析 47
4-3 多晶氧化鋁燒結之觀察 50
4-3-1 預燒結800oC之差異性 50
4-3-2 多晶氧化鋁燒結之觀察 60
4-3-3 透光多晶氧化鋁 69
第五章 結論 72
參考文獻 73
1.T. Shirai, H. Watanabe, M. Fuji and M. Takahashi, “Structural properties and surface characteristics on aluminum oxide powders, Annual Report of the Ceramics Research Laboratory Nagoya Institute of Technology, 9, 23-31 (2009).
2.Apetz and M.P.B. Bruggen, “Transparent polycrystalline alumina: a light-scattering model, J. Am. Ceram. Soc., 86, 480-486 (2003).
3.R.W. Rice, C.C. Wu, and F. Borchelt, “Hardness-grain-size relations in ceramics, J. Am. Ceram. Soc., 77, 2539-2553 (1994).
4.N. Miyahara, K. Yamaishi, Y. Mutoh, and K. Uematsu, “Effect of grain size on strengyh and fracture toughness in alumina, JSME International Jourmal, 37, 231-237 (1994).
5.Y. Kim and T. Hsu, “A reflection electron microscopic (REM) study of a-Al2O3 (0001) Surfaces, Surface Science, 258, 131-146 (1991).
6.G. Yamaguchi, “Alumina to alumina suiwabutsu no kouzou, Kagaku to Kougyou, 17, 1326-1335 (1964).
7.http://www.accuratus.com/alumox.html
8.N. Miyahara, K. Yamaishi, Y. Mutoh, K. Uematsu, and M. Inoue, “Effect of grain size on strength and fracture toughness in alumina, JSME international Journal, 37, 231-237 (1994)
9.M. Stuer et al., “Transparent polycrystalline alumina using spark plasma sintering: effect of Mg, Y, and La doping, J Euro. Ceram. Soc., 30, 1335-1343 (2010)
10.Y.T. O, J.B. Koo, K.J. Jong, J.S. Park, and D.C. Shin, “Effect of grain size on transmittance and mechanical strength of sintered alumina, Mater. Sci. Eng. A-Struct, 374, 191-195 (2004).
11.林幸慧,以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形及燒結行為,國立成功大學資源工程學系,碩士論文,中華民國九十八年。
12.劉煥林,陶瓷成形技術,陶瓷技術手冊第三章,中華民國粉末冶金學會,(1994)。
13.A.C. Sutorik, G. Gilde, J.J. Swab, C. Cooper, R. Gamble, and E. Shanholtz, “Transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO·1.2Al2O3, J. Am. Ceram. Soc., 95 [2] 636–643 (2012).
14.R.M. Pashley and M.E. Karamam, “Applied colloid and surface chemistry, Wiley, Canberra (2004).
15.J. A. Lewis, “Colloidal processing of ceramics, J. Am. Ceram. Soc., 83 [10], 2341-2359 (2000).
16.D.W. Fuerstenau, and Pradip, “Zeta potentials in the flotation of oxide and silicate minerals, Advances in Colloid and Interface Science, 114-115,9-26 (2005).
17.W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal dispersions, Cambridge University Press, Cambridge, (1989).
18.R.L. Coble, “Sintering crystalline solid: II ecperimental test of diffusion models in powder compacts, J. Appl. Phys., 32, 793-799 (1961).
19.林江財,燒結實務,陶瓷技術手冊第五章,中華民國粉末冶金學會,(1994)。
20.B. Liu, C. Peng, R. Wang, X. Wang, Z. Wang, and T. Li, “Influence factors for stability behavior of Al2O3 suspension, The Chinese Journal of Nonferrous Metals, 10, 2833-2838 (2012).
21.F.J.T. Lin and L.C.D. De Jonghe, “Microstructure refinement of sintered alumina by a two-step sintering technique, J. Am. Ceram. Soc., 80, 2269–2277, (1997).
22.K. Bodišová, D. Galusek, P. Švančárek, V. Pouchlý, and K. Maca, “Grain growth suppression in alumina via doping and two-step sintering, Ceramics International, 41, 1975–1983 (2015).
23.R.L. Coble, “Sintering alumina: effect of atmosphere, J. Am. Ceram. Soc., 45[3] 123-127 (1962).
24.G.C. Wei and W.H. Rhodes, “Sintering of translucent alumina in a Nitrogen–Hydrogen Gas Atmosphere , J. Am. Ceram. Soc., 83 [7], 1641-1648 (2000).
25.S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, Z.L. Dong, G.E.B. Tan, W.X. Que, T.S. Zhang, S. Li, L.B. Kong, “Transparent ceramics: Processing, materials and applications, Progress in Solid State Chemistry 41, 20-54 (2013).
26.J. Liu, Y. Wang, F. Yang, K. Chen, L. An, “Grain refining in spark plasma sintering Al2O3 ceramics, Journal of Alloys and Compounds, 622, 596-600 (2015).
27.D. Santhiya, S. Subramanian, K.A. Natarajan, and S.G. Malghan, “Surface chemical studies on alumina suspensions using ammonium poly(methacrylate), Colloids Surf. A,164, 143-154 (2000).
28.http://www.sumitomo-chem.co.jp/products/docs/en_a06008.pdf
29.D.S. Kim, J.H. Lee, R.J. Sung, S.W. Kim, H.S. Kim, J.S. Park, “Improvement of translucency in Al2O3 ceramics by two-step sintering technique, Journal of the European Ceramic Society, 27, 3629–3632 (2007).
30.K. L. Gavrilov, S.J. Benison, K. R. Mikeska and R. Levi-Setti, “Grain boundary chemistry of alumina by high-resolution Imaging SIMS, Acta mater., 47, 4031-4039, (1999).
31.L. Ćurković, V. Rede, K. Grilec, A. Mulabdić, “Hardness and fracture toughness of alumina ceramics, Conference on Materials, processes, Friction and Wear, 12. 40-45, (2007).
32.K. M. Liang, “Evaluation by indentation of fracture toughness of ceramic materials, Journal of materials science 25, 207-214, (1990).
33.C.J. Wang C.Y. Huang, “The variations in sintering mechanism and microstructure evolution of pure and ZrO2-doped α-Al2O3, Conference of resources engineering in Taiwan, 2, 181-185 (2005).
34.R.W. Rice, S.W. Freimen and P.F. Becher, “Grain-size dependence of fracture energy in ceramics: I, experiment, J. Am. Ceram. Soc., 64 (6), 345-350 (1981).
35.A. Muchatar and L.C. Lim, “Indentation fracture toughness of high purity submicron alumina, Acta. Meter., 46 (5), 1683-1690 (1998).
36.B. Mussles, M.V. Swain, and N. Claussen, “Dependence of fracture toughness of alumina on grain size and test technique, J. Am. Ceram. Soc., 65 [11], 566-72 (1982).
37.盧宏陽,非計量式組成對鎂鋁尖晶石燒結之影響,國立中山大學材料科學工程研究所,國科會計畫,中華民國九十八年。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top