跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宜哲
研究生(外文):Tsai, Yi-Che
論文名稱:基植於智慧型天線技術之頻率調變連續波船舶相位陣列雷達系統實現
論文名稱(外文):A Frequency-Modulated Continuous Wave Phased Array Marine Radar System Based on Smart Antenna Technology
指導教授:黃瑞彬黃瑞彬引用關係
指導教授(外文):Hwang, Ruey-Bing
口試委員:林清泉蕭承麒林育德張志揚陳正中王健仁
口試委員(外文):Lin, Ching-ChyuanHsiao, Cherng-ChyLin, Yu-DeChang, Chi-YangChen, Cheng-ChungWang, Chien-Jen
口試日期:2016-01-27
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:77
中文關鍵詞:頻率調變波智慧型天線系統相位陣列系統波束合成技術船舶雷達系統
外文關鍵詞:FMCWsmart antenna systemphased-array systembeam-forming techniquemarine radar system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用頻率調變波(Frequency-Modulated Continuous Wave, FMCW)與智慧型陣列天線技術的概念,設計與實現一新型態之X頻段波船舶雷達系統,其關鍵之特點乃是利用頻率調變波的概念偵測船舶距離,並且藉由智慧型相位陣列天線技術進行全電子式波束掃描進行辨識船舶之方向,與機械式雷達系統相較,能有效提升整體雷達系統之運作功效,如縮短船舶的距離與方位辨識時間與提供即時完整之訊息。本論文所提出之雷達系統在發射鏈路中包含了八支線性子陣列天線,每一子陣列天線涵蓋了一維的串聯饋入貼片天線,每相鄰之單一貼片天線之間距為半波長做週期性的排列,此子陣列天線位於垂直平面上可產生高指向性與窄主波束之特性。此外,本論文亦提出混合式類比-數位波束合成之架構,特別設計了相位本地震盪電路(Phased Local Oscillator, Phased LO)架構而非透過昂貴的X頻段相移器調整相位,即可達到即時波束合成的目標,藉此提高訊號雜訊比。另外,我們亦可藉由直接數位合成器(Direct Digital Synthesis, DDS)產生與控制頻率調變波之振幅與相位,達到波束合成之效。在相位陣列天線技術中,相位校正乃為重要之課題,故本雷達系統位於每一發射鏈路之末端耦合X頻段之訊號,藉由混波器將高頻訊號降至基頻,以供基頻數位訊號處理其相位權重,適時地回授與修正相位本地震盪電路所產生之相位,可精準控制波束合成之方向,實現智慧型天線技術來辨別船舶之距離與方位。在此雷達系統之接收端部分,將運用了由32個方形貼片所組成之陣列天線作為接收端天線,並且實現了由X頻段降頻至正交基頻之降頻電路與基頻數位訊號處理。本論亦提供距離、方位與智慧型天線系統中的波束合成技術達到波束掃描之量測結果進行討論與分析。
本論文所提出之雷達系統之中心頻率操作於9410 MHz、操作頻寬為50 MHz與掃頻時間為250 μs之規格下運作,具有多目標距離與方位偵測之能力。為了達到良好的頻率調變訊號之線性度,我們將採用直接數位合成器(AD9958)產生線性之頻率調變訊號,使此雷達系統達到較佳的FMCW頻率差之資訊。本雷達系統在發射端部分所設計之相位陣列天線增益為22 dBi,其位於垂直與水平平面之半功率波束寬度分別為15度與20度。此外,本系統亦使用雷達目標模擬器測試,此模擬器將動態改變傳送FMCW訊號之延遲時間,回送至接收端進而解析出距離之資訊,本系統之距離解析度約略為三公尺,與理論值相符。最後,我們將呈現在水平面的位置平面顯示器(PPI)於本論文中。

This dissertation presents the development, fabrication, and measurement of an X-band marine phased-array frequency-modulated continuous-wave (FMCW) radar system based on the smart antenna technology. The proposed FMCW radar system incorporating the electrically beam-forming technique is presented in this dissertation. Such a system is composed of eight subarray antennas arranged linearly in the transmitter chain, each of which consists of ten 1-D series-fed patch array antennas with half-wavelength separation period generating a directionally narrow pattern along the vertical plane. The hybrid analog-digital beam-forming scheme was implemented; specifically, the phased local oscillator was developed for manipulating the phase angle over the local oscillator rather than over the output X-band signal for transmission. Slightly continuous beam steering in around one degree increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Alternatively, by dynamically adjusting the amplitude and phase of the FMCW signals generated by direct digital synthesis (DDS) device (Analog Device-AD9958), we can also achieve the function of beam-forming. Phase angle calibration was implemented by coupling each transmitter output and down-converter into the baseband to calculate the correction factor to the weight. Additionally, the targets with their positions and ranges are estimated by using the smart antenna technology. The receiver in the radar system, which includes the hardware for down-converting the X-band signals to I/Q baseband, the array antenna composed of 32 identical square patches, and the software for implementation, has been deployed. The measurements for range detection, positioning determination, and beam-forming techniques at X band frequencies have been carried out in this research work.
The proposed radar system is operated at the center frequency of 9410 MHz with bandwidth 50 MHz and a sweep time of 250 μs. To obtain good linearity, the linear FM signal is generated by DDS (Analog Device-AD9958). The phased array antenna gain in the transmitter is around 22 dBi. The 3-dB beamwidths after beam-forming are 15 degrees and 20 degrees along the vertical and horizontal planes, respectively. Furthermore, the performance of this radar system has been evaluated using the radar target simulator by dynamically manipulating the transmitted FMCW signal and processing by the receiver to solve the distance accordingly. The measured results indicate that the range resolution is approximately 3 meters, which agrees with theoretical value. Finally, the plan position indicator (PPI) display is also shown along the horizontal plane in the dissertation.

Abstract (Chinese) i
Abstract (English) iii
Acknowledgements v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Organization of Dissertation 12
Chapter 2 Principle of an FMCW Radar 13
Chapter 3 Phased-Array FMCW Radar Architecture 17
3.1 Phased STALO (stable local oscillator) 19
3.2 Passive Components 26
3.3 Active Components 36
3.4 Phased-Array Antennas 40
Chapter 4 Two-Dimension Phased Array Antenna System 44
4.1 Principle and Architecture of the 2D Phased Array Antenna System 44
4.2 Critical Components in 2D Phased Array Antenna System 48
4.3 Measured Results and discussion of the Phased Array Antenna System 52
Chapter 5 Hybrid Analog-Digital Beamformer 57
5.1 System Architecture of the Beam-forming Network 57
5.2 Radiation Pattern Measurement of the Beam-former Plus Subarray Antennas 61
Chapter 6 Radar Performance Evaluation 64
6.1 Radar System Analysis 64
6.2 Range Detection 66
6.3 Range and Azimuth Detection 69
6.4 Range Resolution Measurement Using a Radar Target Simulator 70
Chapter 7 Conclusions and Future works 72
Bibliography 73


[1] M. I. Skolnik, Radar Handbook. New York, NY, USA: McGraw Hill, 1970.
[2] W. L. Melvin and James A. Scheer, Principles of Modern Radar: Radar Applications, UK: SciTech Publishing, Vol. 3, 2014.
[3] F. H. Sanders and Bradley J. Ramsey, “Phased array antenna pattern variation with frequency and implications for radar spectrum measurements,” National Telecommunications and Information Administration, 2005.
[4] M. Pirkl and W. Holpp, "From research to application: How phased array radars conquered the real world," in Radar Symposium (IRS), 2013 14th International, 2013, pp. 17-22.
[5] R. J. Mailloux, Phased Array Antenna Handbook 2nd. Artech House, 2005.
[6] F. Macdonald, "The correlation of radar sea clutter on vertical and horizontal polarization with wave height and slope," in 1958 IRE International Convention Record, 1956, pp. 29-32.
[7] J. N. Briggs, Target detection by marine radar. IET, 2004, vol. 16.
[8] M. I. Skolnik, Introduction to radar systems. New York, NY, USA: McGraw Hill, 3rd, 2001.
[9] V. Gregers-Hansen and R. Mital, "An empirical sea clutter model for low grazing angles," in Radar Conference, 2009 IEEE, 2009, pp. 1-5.
[10] A. Bole, A. Wall, and A. Norris, "Chapter 2 - The Radar System – Technical Principles," in Radar and ARPA Manual (Third Edition), A. B. W. Norris, Ed., ed Oxford: Butterworth-Heinemann, 2014, pp. 29-137.
[11] F. E. Nathason, J. P. Reilly, and Marvin N. Cohen, Radar Design Principles, McGraw–Hill, 1991.
[12] E. Brookner, Radar Technology. Artech House, 1977.
[13] M. Jahn, R. Feger, C. Wagner, Z. Tong, and A. Stelzer, “A Four-Channel 94-GHz SiGe-Based Digital Beamforming FMCW Radar,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 861 – 869, Mar. 2012.
[14] J. H. Choi, J. H. Jang, and J. E. Roh, "Design of an FMCW Radar Altimeter for Wide-Range and Low Measurement Error," Instrumentation and Measurement, IEEE Transactions on, vol. 64, pp. 3517-3525, 2015.
[15] David, William. "FMCW mmw radar for automotive longitudinal control," California Partners for Advanced Transit and Highways (PATH), 1997.
[16] F. Y. Kuo and R. B. Hwang, “High-Isolation X-Band Marine Radar Antenna Design,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 2331–2337, May 2014.
[17] R. B. Hwang, Y. C. Tsai, and C. C. Hsiao, "An adaptive multi-beam massive array architecture for 5G wireless," in Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on, pp. 125-126, 2015.
[18] K. A. Gotsis, and et al., “Beamforming in 3G and 4G mobile communications: The switched beam approach,” Recent Developments in Mobile Communications-A Multidisciplinary Approach, pp. 201–216, 2011.
[19] J. H. Winters, “Smart antenna techniques and their application to wireless ad hoc networks, “Wireless Communications, IEEE, vol.13, pp. 77–83, 2006.
[20] J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications, Prentice Hall PTR, 1999.
[21] P. S. Simon, “Analysis and synthesis of Rotman lenses,” 22nd AIAA International communications satellite systems conference (ICSSC), paper 2004-3196, 2004.
[22] I. L. Hung and L. Wen-Jiao, “A beam switching array based on Rotman lens for MIMO technology,” Microwave and Millimeter Wave Technology (ICMMT), 2012 International Conference on, pp. 1–4, 2012.
[23] M. Rajabalian and B. Zakeri, "Optimisation and implementation for a non-focal Rotman lens design," Microwaves, Antennas & Propagation, IET, vol. 9, pp. 982-987, 2015.
[24] M. Bona, L. Manholm, J. P. Starski, and B. Svensson, "Low-loss compact Butler matrix for a microstrip antenna," Microwave Theory and Techniques, IEEE Transactions on, vol. 50, pp. 2069-2075, 2002.
[25] M. Nedil, T. A. Denidni, and L. Talbi, "Novel butler matrix using CPW multilayer technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 499-507, 2006.
[26] K. Wincza, S. Gruszczynski, and K. Sachse, "Reduced sidelobe four-beam antenna array fed by modified Butler matrix," Electronics Letters, vol. 42, pp. 508-509, 2006.
[27] Barry D. Van Veen and Kevin M. Buckley, “ Beamforming: A versatile Approach to Spatial Filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4-24, Apr. 1988.
[28] V. U. Reddy, A. Paulraj, and T. Kailath, “ Performance analysis of the optimum beamformer in the presence of correlated sources and its behavior under spatial smoothing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 35, no. 7, pp. 927-936, July 1987.
[29] D. Kelley and W. Stutzman, “Array antenna pattern modeling methods that include mutual coupling effects,” IEEE Transactions on Antennas and Propagation, vol. 41, no. 12, pp. 1625-1632, Dec. 1993.
[30] H. Aumann, A. Fenn, and F. Willwerth, “Phased array antenna calibration and pattern prediction using mutual coupling measurements,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 7, pp. 844-850, July 1989.
[31] R. B. Hwang, Yi-Che Tsai, and C. C. Hsiao, "An adaptive multi-beam massive array architecture for 5G wireless," in Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on, pp. 125-126, 2015.
[32] J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004, vol. 167.
[33] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 11, pp. 2099–2109, 1996.
[34] “CST studio suite 2015,” http://www.cst.com.
[35] S. Young-Ho and C. Kai, "A new Millimeter-wave printed dipole phased array antenna using microstrip-fed coplanar stripline tee junctions," Antennas and Propagation, IEEE Transactions on, vol. 52, pp. 2019-2026, 2004.
[36] R. A. Alhalabi and G. M. Rebeiz, "High-Gain Yagi-Uda Antennas for Millimeter-Wave Switched-Beam Systems," Antennas and Propagation, IEEE Transactions on, vol. 57, pp. 3672-3676, 2009.
[37] Y. Yao, M. Liu, W. Chen, and Z. Feng, "Analysis and design of wideband widescan planar tapered slot antenna array," Microwaves, Antennas & Propagation, IET, vol. 4, pp. 1632-1638, 2010.
[38] W. Xiaoling and Z. Chuanfang, "Analysis of two-dimensional wide-angle scanning phased array antenna element in Ka-band," in Microwave Technology & Computational Electromagnetics (ICMTCE), 2013 IEEE International Conference on, 2013, pp. 288-290.
[39] G. Strauss and K. Breitsameter, "A circular polarized tem horn antenna array with large scanning angle," in Radio and Wireless Symposium (RWS), 2011 IEEE, 2011, pp. 98-101.
[40] W. L. Stutzman and G. A. Thiele (2012), Antenna Theory and Design 3nd ed., John Wiley, New York.
[41] F. Rostan and W. Wiesbeck, "Mutual coupling in aperture-coupled microstrip patch arrays with a sequential feeding technique," in Antennas and Propagation Society International Symposium, 1996. AP-S. Digest, vol.3, pp. 1920-1923, 1996.
[42] V. Rathi, G. Kumar, and K. P. Ray, "Improved coupling for aperture coupled microstrip antennas," Antennas and Propagation, IEEE Transactions on, vol. 44, pp. 1196-1198, 1996.
[43] C. C. Chang, R. H. Lee, and T. Y. Shih, "Design of a Beam Switching/Steering Butler Matrix for Phased Array System," Antennas and Propagation, IEEE Transactions on, vol. 58, pp. 367-374, 2010.
[44] V. Rathi, G. Kumar, and K. P. Ray, "Improved coupling for aperture coupled microstrip antennas," Antennas and Propagation, IEEE Transactions on, vol. 44, pp. 1196-1198, 1996.
[45] B. Biglarbegian, M. R. Nezhad-Ahmadi, M. Fakharzadeh, and S. Safavi-Naeini, "Millimeter-Wave Reflective-Type Phase Shifter in CMOS Technology," Microwave and Wireless Components Letters, IEEE, vol. 19, pp. 560-562, 2009.
[46] P. Alcon, N. Esparza, L. F. Herran, and F. Las Heras, "On the design of generic matching networks in reflective-type phase shifters for antennas," in Antennas and Propagation (EuCAP), 2015 9th European Conference on, 2015, pp. 1-5.
[47] K. Kwang-Jin, J. W. May, and G. M. Rebeiz, "A Millimeter-Wave (40-45 GHz) 16-Element Phased-Array Transmitter in 0.18-um SiGe BiCMOS Technology," Solid-State Circuits, IEEE Journal of, vol. 44, pp. 1498-1509, 2009.
[48] Y. Tiku and G. M. Rebeiz, "A 22-24 GHz 4-Element CMOS Phased Array With On-Chip Coupling Characterization," Solid-State Circuits, IEEE Journal of, vol. 43, pp. 2134-2143, 2008.
[49] D. Ehyaie and A. Mortazawi, "A 24-GHz Modular Transmit Phased Array," Microwave Theory and Techniques, IEEE Transactions on, vol. 59, pp. 1665-1672, 2011.
[50] H. Hashemi, G. Xiang, A. Komijani, and A. Hajimiri, "A 24-GHz SiGe phased-array receiver-LO phase-shifting approach," Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 614-626, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top