跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡尚志
研究生(外文):Tsai Sun-Chih
論文名稱:含橢圓孔洞無窮板混合型邊界值問題之熱彈性通解
論文名稱(外文):Thermal stresses in an infinite body with a partially reinforced elliptic hole
指導教授:趙振綱
指導教授(外文):Chao Ching-Kong
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:81
中文關鍵詞:熱流橢圓孔洞等向性異向性熱應力
外文關鍵詞:heat flowelliptic holeisotropicanisotropicthermal stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提供一等向性或異向性材料無窮平板含界面部份嵌入物之橢圓孔洞其承受無窮遠均勻熱流作用下之解析解。首先求解等向性材料時,可利用複變函數的解析連續性質來滿足界面的連續條件並以保角轉換之技巧為基礎,接著以希爾伯特問題的推導將界面嵌入物上的邊界條件表成柯西奇異積分並配合留數定理求得積分值即完成解析解,此溫度與應力之全場解可由簡潔之複數形式表示,受無窮遠熱流作用影響,洞上部份嵌入物之旋轉角可藉由材料特性、幾何特性與作用力大小來決定。最後,將各應力分佈、應力強度因子求出並以圖形展示出。其次求解異向性材料時以史磋公式為基礎,並引用解析連續方法來求解二維異向性彈性體在橢圓邊界上的混合型邊界值問題。另外也應用保角轉換來處理曲線邊界問題,最後我們將所得的解析解化為等向性材料問題之解,以驗證其正確性。此外,界面上之應力數值結果也以圖例方式來輔助說明上述問題的物理行為。

This paper provides an analytical exact closed-form solution for a partially reinforced elliptic hole embedded in an infinite isotropic or anisotropic medium under a remote uniform heat flow. Based on the method of analytical continuation which can staisfy the boundary conditions and the technique of conformal mapping, the full field solutions for the temperature and stresses are obtained in compact complex form. The rotation angle of a reinforced portion on the hole due to the application of a remote uniform heat flow is determined analytically which is dependent of the material property, geometric configuration and the magnitude of applied loading. Comparison of the present results with the existing ones shows that our derived solutions are exact and general. Finally, in order to check answer correctness the stress functions corresponding to anisotropic problems are successfully reduced to those corresponding to isotropic problems. Some numerical results are carried out and shown in graphic form to illustrate the physic behavior of the present problem.

中文摘要 ……………………………………………………………….….I
英文摘要 …………………………………………………………………..II
誌謝 ..….…………………………………………………………………...III
目錄 ..….…………………………………………………………………..IV
圖表索引 …..……………………………………………………….……...VII
符號索引 …………………………………………………………….……IX
第一章 緒 論 ....…………………………………………………….….…1
1.1 前言 ..……………………………………………………………...1
1.2 文獻回顧 .………………………………………………………….2
1.3 本文作法.…………………………………………………………..4
第二章 等向性熱彈性問題之求解………………………………………...6
2.1 基本方程式 ………………………………………………………..6
2.1.1 保角轉換…………….……………………………….………..7
2.1.2 無窮平板含絕熱橢圓洞之溫度函數 …………………………7
2.2 等向性熱應力函數求解 .………………………………………….9
2.2.1 基本方程式….……………………………….……………….9
2.2.2 混合邊界值問題…….……………………………….………..11
第三章 異向性熱彈性力學理論基礎 ……………………………………..24
3.1 Stroh公式之概述………………………………………………….24
3.2 恆等式……………………....……………………………………..28
第四章 異向性熱彈性問題求解……………………………….…………..30
4.1 前言 ……………………………………………………………...30
4.2 溫度函數推導 ……………………………………………………30
4.2.1 保角轉換 ……………………….…………………………...31
4.2.2 異向性無窮平板含絕熱橢圓洞之溫度場…….………….…..32
4.3 熱應力函數 ………………………………………….…………..34
4.4 界面應力 ………………………………………………….……51
第五章 數值解與討論………………………………………….………….55
5.1 應力強度因子之探討……………………………………………..55
5.2 熱應力分佈探討…………………………………………..……...56
5.3 嵌入物之旋轉角………………………………………….………57
第六章 結 論………………………………………….…………….…….68
6.1 結 論……………………………………………………………..68
6.2 未來展望 ………………………………………………………..70
參考文獻 ………………………………………………………………….71
附錄A ……………………………………………………………….…….74
附錄B ………………………………………………………………….….76
作者簡介 ………………………………………………………………….82

[1] Florence, A. L. and Goodier, J. N., "Thermal Stress at Spherical Cavities and Circular Holes in Uniform Heat Flow," Journal of Applied Mechanics, ASME, Vol. 26, pp. 293-294 (1959).
[2] Muskhelishvili, N. I., "Some Basic Problems of Mathematical Theory of Elasticity," Noordhoff, Groningen, The Netherlands (1953).
[3] Chen, W. T., "Plane Thermal Stress at Insulated Hole Under Uniform Heat Flow in an Orthotropic Medium," Journal of Applied Mechanics, ASME, Vol. 34, pp. 133-136 (1967).
[4] Green, A. E. and Zerna, W., "Theoretical Elasticity," Oxford University Press, London (1954).
[5] Hwu, C., "Thermal Stresses in an Anisotropic Plate Disturbed by an Insulated Anisotropic Elliptic Hole or Crack," Journal of Applied mechanics, ASME, Vol. 57, pp. 916-922 (1990).
[6] Tarn, J. Q. and Wang, Y. M., "Thermal Stresses in Anisotropic Bodies with a Hole or a Rigid Inclusion," Journal of Thermal Stresses, Vol. 16,pp.455-471 (1993).
[7] Lekhnitskii, S. G., "Theory of Elasticity of an Anisotropic Elastic Body," Holden-Day, San Francisco (1963)
[8] Chao, C. K. and Shen, M. H., "Thermal Stresses in a Generally Anisotropic Body with an Elliptic Inclusion Subject to Uniform Heat Flow," Journal of Applied Mechanics, ASME, Vol. 65, pp. 51-57 (1998).
[9] Fan, C. W. and Hwu, C., "Punch Problems for an Anisotropic Elastic Half-Plane," Journal of Applied Mechanics, ASME, Vol. 63, pp. 69-76 (1996).
[10] Fan, C. W. and Hwu, C., "Rigid Stamp Indentation on a Curvilinear Hole Boundary of an Anisotropic Elastic Body," Journal of Applied Mechanics, ASME, Vol. 65, pp. 389-397 (1998).
[11] Chao, C. K., Wu, S. P. and Gao, B., "Thermoelastic Contact Between a Flat Punch and an Anisotropic Half-Space," Journal of Applied Mechanics. (accepted).
[12] Bogdanoff, J. L., "Note on Thermal Stress," Journal of Applied Mechanics., Vol. 21, pp. 88 (1954).
[13] Shen, M. H and Chao, C. K., "Explicit Solution for Elastic and Thermo-
elastic Fields with a Rigid Circular-arc Inclusion," International Journal of Fracture, Vol.65, pp. 1-18 (1994)
[14] Shen, M. H. and Chao, C. K., "Thermoelastic Behavior of Fiber-Reinforced Composites with a Circular-Arc Anticrack," Journal of Thermal Stresses (accepted).
[15] Ting, T. C. T., "Anisotropic Elasticity," Oxford University Press, Inc. (1996).
[16] England, A. H., "Complex Variable Methods in Elasticity," Wiley Interscience, London (1971).
[17] Fan, C. W., "Mixed Boundary Value Problems of Two-dimensional Anisotropic Elastic Bodies," A dissertation submitted to the Factulty of the Institute of Aeronautics and Astronautics National Cheng Kung University (1996).
[18] Hwu, C., "Correspondence Relations Between Anisotropic and Isotropic Elasticity," The Chinese Journal of Mechanics, Vol. 12, No. 4, pp. 483-493 (1996).
[19] Bacon, D. J., Barnett, D. M. and Scattergood, R. O., "Anisotropic continuum theory of lattice defects," Prog. Mater. Sci., Vol. 23, pp. 51-262, (1978).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊